The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
针对可旋转翼式弹道修正组件滚转通道控制中存在的未建模摩擦干扰、参数不确定性和外部随机干扰造成的复合扰动问题,提出一种基于扩张状态观测器(extended state observer, ESO)的滑模控制方法。首先建立弹道修正组件滚转通道模型,将动...针对可旋转翼式弹道修正组件滚转通道控制中存在的未建模摩擦干扰、参数不确定性和外部随机干扰造成的复合扰动问题,提出一种基于扩张状态观测器(extended state observer, ESO)的滑模控制方法。首先建立弹道修正组件滚转通道模型,将动力学模型中存在的外部干扰、未建模摩擦干扰和参数摄动整合为复合干扰,然后设计ESO对修正组件滚转通道模型中难以直接测定的状态变量以及复合干扰进行估计,并基于估计值结合滑模控制理论设计滚转通道控制器,实现对滚转角指令的精确跟踪。综合考虑ESO和滑模控制器构成的闭环控制系统,利用Lyaponov稳定性理论证明了所设计的闭环控制系统的稳定性。最后,通过仿真实验分析,证明所设计的修正组件滚转通道控制器,对滚转角指令的瞬态响应和稳态性能优异,同时可以有效抑制系统复合扰动,具备较强的鲁棒性。展开更多
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
文摘针对可旋转翼式弹道修正组件滚转通道控制中存在的未建模摩擦干扰、参数不确定性和外部随机干扰造成的复合扰动问题,提出一种基于扩张状态观测器(extended state observer, ESO)的滑模控制方法。首先建立弹道修正组件滚转通道模型,将动力学模型中存在的外部干扰、未建模摩擦干扰和参数摄动整合为复合干扰,然后设计ESO对修正组件滚转通道模型中难以直接测定的状态变量以及复合干扰进行估计,并基于估计值结合滑模控制理论设计滚转通道控制器,实现对滚转角指令的精确跟踪。综合考虑ESO和滑模控制器构成的闭环控制系统,利用Lyaponov稳定性理论证明了所设计的闭环控制系统的稳定性。最后,通过仿真实验分析,证明所设计的修正组件滚转通道控制器,对滚转角指令的瞬态响应和稳态性能优异,同时可以有效抑制系统复合扰动,具备较强的鲁棒性。