期刊文献+
共找到3,897篇文章
< 1 2 195 >
每页显示 20 50 100
SCHEDULE ARRANGEMENT AND OPTIMIZATION OF THE FILE TRANSFER NETWORK
1
作者 潘建平 谢俊清 +1 位作者 张雪梅 邓建明 《Journal of Southeast University(English Edition)》 EI CAS 1995年第1期72-82,共11页
This project was designated as Meritorious of Mathematical Contest inModeling (MCM'94). We have been required tu solve a problem of findins thebest schedule of a file transfer network in order to niake the niaktis... This project was designated as Meritorious of Mathematical Contest inModeling (MCM'94). We have been required tu solve a problem of findins thebest schedule of a file transfer network in order to niake the niaktispan the smallestone. Three situations with 展开更多
关键词 FILE transfer network packet switchins I virtual circuit I etjges color-ing VERTEX COLORING I heuristic alsorithm
下载PDF
Enhancing Pneumonia Detection in Pediatric Chest X-Rays Using CGAN-Augmented Datasets and Lightweight Deep Transfer Learning Models
2
作者 Coulibaly Mohamed Ronald Waweru Mwangi John M. Kihoro 《Journal of Data Analysis and Information Processing》 2024年第1期1-23,共23页
Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a ... Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a task susceptible to human error. The application of Deep Transfer Learning (DTL) for the identification of pneumonia through chest X-rays is hindered by a shortage of available images, which has led to less than optimal DTL performance and issues with overfitting. Overfitting is characterized by a model’s learning that is too closely fitted to the training data, reducing its effectiveness on unseen data. The problem of overfitting is especially prevalent in medical image processing due to the high costs and extensive time required for image annotation, as well as the challenge of collecting substantial datasets that also respect patient privacy concerning infectious diseases such as pneumonia. To mitigate these challenges, this paper introduces the use of conditional generative adversarial networks (CGAN) to enrich the pneumonia dataset with 2690 synthesized X-ray images of the minority class, aiming to even out the dataset distribution for improved diagnostic performance. Subsequently, we applied four modified lightweight deep transfer learning models such as Xception, MobileNetV2, MobileNet, and EfficientNetB0. These models have been fine-tuned and evaluated, demonstrating remarkable detection accuracies of 99.26%, 98.23%, 97.06%, and 94.55%, respectively, across fifty epochs. The experimental results validate that the models we have proposed achieve high detection accuracy rates, with the best model reaching up to 99.26% effectiveness, outperforming other models in the diagnosis of pneumonia from X-ray images. 展开更多
关键词 Pneumonia Detection Pediatric Radiology CGAN (Conditional Generative Adversarial networks) Deep transfer Learning Medical Image Analysis
下载PDF
Transfer Learning Approach to Classify the X-Ray Image that Corresponds to Corona Disease Using ResNet50 Pre-Trained by ChexNet
3
作者 Mahyar Bolhassani 《Journal of Intelligent Learning Systems and Applications》 2024年第2期80-90,共11页
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu... The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model. 展开更多
关键词 X-Ray Classification Convolutional Neural network ResNet transfer Learning Supervised Learning COVID-19 Chest X-Ray
下载PDF
Transnational technology transfer network in China:Spatial dynamics and its determinants 被引量:1
4
作者 LIU Chengliang YAN Shanshan 《Journal of Geographical Sciences》 SCIE CSCD 2022年第12期2383-2414,共32页
Patent transfer has been regarded as an important channel for the nations and regions to acquire external technology,and also a direct research object to depict the relationship between supply and demand of technology... Patent transfer has been regarded as an important channel for the nations and regions to acquire external technology,and also a direct research object to depict the relationship between supply and demand of technology flow.Therefore,based on traceable patent transfer data,this article has established a dual-pipeline theoretical framework of transnational-domestic technology transfer from the interaction of the global and local(glocal)perspective,and combines social networks,GIS spatial analysis as well as spatial econometric model to discover the spatial evolution of China’s transnational technology channels and its determinant factors.It is found that:(1)The spatial heterogeneity of the overall network is significant while gradually weakened over time.(2)The eastward shift of the core cities involved in transnational technology channels is accelerating,from the hubs in North America(New York Bay Area,Silicon Valley,Caribbean offshore financial center,etc.)and West Europe(London offshore financial center etc.)to East Asia(Tokyo and Seoul)and Southeast Asia(Singapore),which illustrates China has decreased reliance on the technology from the USA and West Europe.(3)The four major innovation clusters:Beijing-Tianjin-Hebei region(Beijing as the hub),Yangtze River Delta(Shanghai as the hub),The Greater Bay Area(Shenzhen and Hong Kong as the hubs)and north Taiwan(Taipei and Hsinchu as the hubs),are regarded as global technology innovation hubs and China’s distribution centers in transnational technology flow.Among those,Chinese Hong Kong’s betweenness role of technology is strengthened due to linkage of transnational corporations and their branches,and low tax coverage of offshore finance,thus becoming the top city for technology transfer.Meanwhile,Chinese Taiwan’s core position is diminishing.(4)The breadth,intensity,and closeness of domestic technology transfer are conducive to the expansion of transnational technology import channels.Additionally,local economic level has positive effect on transnational technology transfer channels while technology strength and external economic linkage have multifaceted influences. 展开更多
关键词 patent rights transaction technology transfer’s dual pipelines technology transfer network spatial evolution determinant factor
原文传递
Designing an Intelligent Control Philosophy in Reservoirs of Water Transfer Networks in Supervisory Control and Data Acquisition System Stations
5
作者 Ali Dolatshahi Zand Kaveh Khalili-Damghani Sadigh Raissi 《International Journal of Automation and computing》 EI CSCD 2021年第5期694-717,共24页
In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs a... In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels. 展开更多
关键词 Water demand forecasting water transfer network supervisory control and data acquisition water management multicore artificial neural network fuzzy inference system
原文传递
Deep transfer network of heterogeneous domain feature in machine translation
6
作者 Yupeng Liu Yanan Zhang Xiaochen Zhang 《High-Confidence Computing》 2022年第4期8-13,共6页
In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered no... In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered not only their own translation system,but also transferred knowledge of another translation system.The domain meta feature and the objective function of domain adaptation are used to better model the domain transfer task.In this paper,extensive experiments and comparisons are made.The experiment results show that the proposed model has a significant improvement in domain transfer task.The first model has better performance than baseline system,which improves 3.06 BLEU score on the news test set,improves 3.27 BLEU score on the education test set,and improves 3.93 BLEU score on the law test set;The second model improves 3.16 BLEU score on the news test set,improves 3.54 BLEU score on the education test set,and improves 4.2 BLEU score on the law test set. 展开更多
关键词 Neural translation model Deep transfer network Heterogeneous domain Meta feature
下载PDF
Fault Estimation and Accommodation for Networked Control Systems with Transfer Delay 被引量:24
7
作者 MAO Ze-Hui JIANG Bin 《自动化学报》 EI CSCD 北大核心 2007年第7期738-743,共6页
在这份报纸,差错评价和差错的一个方法为有转移延期和进程噪音的联网的控制系统(NCS ) 的容忍的控制被介绍。首先,联网的控制系统作为有转移的分离时间的系统推迟的 multiple-input-multiple-output (MIMO ) 被建模,处理噪音,并且... 在这份报纸,差错评价和差错的一个方法为有转移延期和进程噪音的联网的控制系统(NCS ) 的容忍的控制被介绍。首先,联网的控制系统作为有转移的分离时间的系统推迟的 multiple-input-multiple-output (MIMO ) 被建模,处理噪音,并且为无常建模。在这个模型下面并且在一些条件下面,一个差错评价方法被建议估计系统差错。根据差错评价和滑动模式控制理论的信息,一个差错容忍的控制器被设计恢复系统性能。最后,模拟结果被用来验证方法的效率。 展开更多
关键词 网络控制系统 迟滞转移 容错估计 容错控制 不确定性模型 滑动模型控制
下载PDF
Neonatal Transfer Situation Following Implementation of a Perinatal Network: An Analysis in Douala, Cameroon
8
作者 Daniele Kedy Koum Diomede Noukeu Njinkui +5 位作者 Monique Carole Magnibou Loick Pradel Kojom Foko Charlotte Eposse Rhita Mbono Patricia Epée Eboumbou Calixte Ida Penda 《Open Journal of Pediatrics》 2022年第1期148-161,共14页
Background: Postnatal transfer (PT) is interhospital transport of care-needing newborns. In 2016, a perinatal network was implemented to facilitate PT in the town of Douala, Cameroon. The network was supposed to impro... Background: Postnatal transfer (PT) is interhospital transport of care-needing newborns. In 2016, a perinatal network was implemented to facilitate PT in the town of Douala, Cameroon. The network was supposed to improve PT-related care standards. This study aimed at determining characteristics of PT five years following the implementation of this network. Methods: A cross-sectional study was carried out from February to May 2021 at neonatology wards of six hospitals in Douala. Medical records of newborns transferred to the hospitals were scrutinized to document their characteristics. Parents were contacted to obtain information on PT route and itinerary. Data were analyzed using Epi Info software and summarized as percentages, mean and odds ratio. Results: In total, 234 of the 1159 newborns admitted were transferred, giving a PT prevalence of 20.2% (95% CI 17.9% - 22.6%). Male-to-female ratio of the transferred newborns was 1.3. Neonatal infection (26.5%), prematurity (23.5%) and respiratory distress (15.4%) were the main reasons for transfer. Only 3% of the PT was medicalized while only 2% of the newborns were transferred through perinatal network. On admission, hypothermia and respiratory distress were found in 31% and 35% of the newborns, respectively. The mortality rate among babies was 20% and these had a two-fold risk of dying (95% CI 1.58 - 3.44, p Conclusion: PT and the perinatal network are lowly organized and implemented in Douala. Sensitization of medical staff on in utero transfer, creating center for coordination of the network, and implementation of neonatal transport system could improve the quality of PT. 展开更多
关键词 Postnatal transfer Perinatal network Characterization Douala
下载PDF
基于GIS的公交换乘网络构建及可达性分析 被引量:3
9
作者 程刚 郭磊善 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第2期191-197,共7页
为了提高公交换乘效率、优化公交系统,基于GIS软件构建公交换乘网络,运用该网络对换乘可达性进行了测度和分析.结合Space-P模型和网络分析法,以拉萨市城关区为研究区域,基于公交线路路径、站点、交叉口等基本信息构建同站换乘子网络.结... 为了提高公交换乘效率、优化公交系统,基于GIS软件构建公交换乘网络,运用该网络对换乘可达性进行了测度和分析.结合Space-P模型和网络分析法,以拉萨市城关区为研究区域,基于公交线路路径、站点、交叉口等基本信息构建同站换乘子网络.结合公交站点服务范围、步行通道路径、交叉口等信息构建异站换乘子网络.二者协同实现了基于ArcGIS的公交换乘网络构建,并依据该网络对公交线路的乘客在车时间和换乘系数进行测度和分析.结果表明:构建的换乘网络能够对乘客在车时间进行良好的测度,乘客在车时间最大值为68.68 min,最小值为2.00 min,乘客换乘在车时间平均值为29.90 min.该换乘网络能够对换乘系数进行良好的测度,得到有效换乘线路90 300条,换乘系数最大为4条(线路为62条),最小为0条(线路为1 354条).采用可达性度量模型,可实现对公交站点时间可达性和换乘可达性的良好测度和分析. 展开更多
关键词 公共交通 公交网络 换乘网络 GIS 可达性 Space-P模型 网络分析法
下载PDF
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
10
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
原文传递
基于迁移学习与残差网络的快递包裹X光图像识别 被引量:1
11
作者 朱磊 黄磊 +1 位作者 张媛 程诚 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第2期37-45,65,共10页
针对快递包裹违禁物品识别存在种类繁多、依赖人力和X光图像获取难度大等问题,为提高快递包裹违禁物品识别的效率和准确度,本研究提出一种迁移学习与残差网络相结合的快递包裹X光图像识别方法(TL-ResNet18)。首先构建了相似度高的源领... 针对快递包裹违禁物品识别存在种类繁多、依赖人力和X光图像获取难度大等问题,为提高快递包裹违禁物品识别的效率和准确度,本研究提出一种迁移学习与残差网络相结合的快递包裹X光图像识别方法(TL-ResNet18)。首先构建了相似度高的源领域数据集和目标领域数据集;其次,选用ResNet18作为预训练模型,调整初始化参数结构,并将ResNet18学习到的内容作为初始化参数迁移到目标领域,实现快递包裹X光图像分类;最后,将相同数据集作为三种模型的输入并对结果进行对比。实验结果表明,TL-ResNet18模型的局部微调和全局微调的识别准确率分别为93.5%、95.0%,相比于ResNet18模型提高了7%、8.5%,且精确度、召回率和F1值都优于ResNet18模型,该方法性能更优,且不受小型数据集对深层网络训练的限制,有利于快递包裹X光图像识别的智能化发展。 展开更多
关键词 快递包裹 X光图像 残差网络 迁移学习
下载PDF
基于TCN和迁移学习的混凝土坝变形预测方法 被引量:1
12
作者 张健飞 叶亮 王磊 《人民黄河》 CAS 北大核心 2024年第4期142-147,共6页
混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的... 混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的测点为源域,以缺少数据的测点为目标域,将在源域上训练好的TCN模型的结构和参数迁移到目标域模型中,固定其中的冻结层参数,利用目标域中的数据对目标域模型可调层参数进行调整。同时,采用动态时间规整选择与目标域数据序列相似度最高的监测数据作为最佳源域数据,提升迁移学习效果。工程实例分析表明:迁移学习后的目标域模型的均方根误差和平均绝对误差与利用足量数据训练的TCN模型的预测误差相比,差异仅分别为1.73%和8.09%,小数据量情况下TCN预测模型的精度得到了提高。 展开更多
关键词 时域卷积网络 迁移学习 动态时间规整 变形预测
下载PDF
Routing in Delay Tolerant Networks (DTN)<br>—Improved Routing with MaxProp and the Model of “Transfer by Delegation” (Custody Transfer)
13
作者 El Mastapha Sammou Abdelmounaim Abdali 《International Journal of Communications, Network and System Sciences》 2011年第1期53-58,共6页
In this paper, we address the problem of routing in delay tolerant networks (DTN). In such networks there is no guarantee of finding a complete communication path connecting the source and destination at any time, esp... In this paper, we address the problem of routing in delay tolerant networks (DTN). In such networks there is no guarantee of finding a complete communication path connecting the source and destination at any time, especially when the destination is not in the same region as the source, which makes traditional routing protocols inefficient in that transmission of the messages between nodes. We propose to combine the routing protocol MaxProp and the model of “transfer by delegation” (custody transfer) to improve the routing in DTN networks and to exploit nodes as common carriers of messages between the network partitioned. To implement this approach and assess those improvements and changes we developed a DTN simulator. Simulation examples are illustrated in the article. 展开更多
关键词 ROUTING Delay TOLERANT networks DTN MaxProp CUSTODY transfer Simulator
下载PDF
Research on Surface Information Extraction Based on Deep Learning and Transfer Learning
14
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2023年第10期67-78,共12页
The land cover types in South China are varied, and the terrain is undulating, and the area of different land types is small, and the remote sensing monitoring work was difficult. In order to solve these problems, an ... The land cover types in South China are varied, and the terrain is undulating, and the area of different land types is small, and the remote sensing monitoring work was difficult. In order to solve these problems, an automatic classification method based on transfer learning and convolutional neural network model was established in this paper, with a total classification accuracy of 98.1611%. This paper proposes a land use classification remote sensing method based on deep learning, which improved the automation level and monitoring accuracy of complex land surface remote sensing monitoring in South China, and it provided technical support for the land consolidation work in China. 展开更多
关键词 Land Classification Convolution Neural network transfer Learning
下载PDF
Land-Use Classification via Transfer Learning with a Deep Convolutional Neural Network
15
作者 Chu-Yin Weng 《Journal of Intelligent Learning Systems and Applications》 2022年第2期15-23,共9页
Land cover classification provides efficient and accurate information regarding human land-use, which is crucial for monitoring urban development patterns, management of water and other natural resources, and land-use... Land cover classification provides efficient and accurate information regarding human land-use, which is crucial for monitoring urban development patterns, management of water and other natural resources, and land-use planning and regulation. However, land-use classification requires highly trained, complex learning algorithms for accurate classification. Current machine learning techniques already exist to provide accurate image recognition. This research paper develops an image-based land-use classifier using transfer learning with a pre-trained ResNet-18 convolutional neural network. Variations of the resulting approach were compared to show a direct relationship between training dataset size and epoch length to accuracy. Experiment results show that transfer learning is an effective way to create models to classify satellite images of land-use with a predictive performance. This approach would be beneficial to the monitoring and predicting of urban development patterns, management of water and other natural resources, and land-use planning. 展开更多
关键词 Land-Use Classification Machine Learning transfer Learning Convolutional Neural network
下载PDF
中国纺织专利技术转移网络的结构特征及演化
16
作者 王鹏飞 程华 《现代纺织技术》 北大核心 2024年第2期70-82,共13页
科技创新有助于推动纺织行业高质量发展,是提升中国纺织企业国际竞争力的关键。以中国纺织专利技术转移数据为研究对象,采用专利计量分析和社会网络分析方法,全面剖析国内纺织专利技术转移网络的结构特征、演化过程和发展趋势。研究发现... 科技创新有助于推动纺织行业高质量发展,是提升中国纺织企业国际竞争力的关键。以中国纺织专利技术转移数据为研究对象,采用专利计量分析和社会网络分析方法,全面剖析国内纺织专利技术转移网络的结构特征、演化过程和发展趋势。研究发现:在国家提倡科技自主创新和可持续发展理念下,国内纺织领域技术转移活动呈逐年上升势态,成为助力科技资源转化为生产力和经济优势的重要环节。在整体转移网络结构特征上,该领域技术转移网络从初始的节点、边和网络连线比较松散,发展到网络图谱呈现节点和边密集辐射的网络状态,技术转移的机构数量和频次显著增长。在可持续发展理念和“低碳”政策的影响下,不同领域的技术快速融合发展,A61类医用纺织品和H01类电子元器件等专利转让规模增速明显;尤其2019年底出现的全球新型冠状病毒感染疫情,以医用纺织品为代表的技术创新与转移,对满足社会抵抗疫情需求和提高企业产品竞争力等具有积极的推动作用。文章研究分析了中国纺织专利技术的转移趋势、网络结构和演化过程,从时间维度、网络规模和演化趋势3个层面进行研究和讨论,为“十四五”时期纺织行业技术创新与转化提供参考。 展开更多
关键词 纺织 专利计量 技术转移 网络结构 演化过程
下载PDF
基于机器深度学习的小麦播种机控制系统研究 被引量:4
17
作者 单绍隆 康华 《农机化研究》 北大核心 2024年第7期208-211,共4页
针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了... 针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了使播种机的控制系统能有效进行图像检测识别,提升播种机的控制精度,采用机器深度学习中的卷积神经网络算法对控制系统进行设计,并采用迁移学习的方式对模型进行训练和检测。为了验证播种机控制系统的性能,对其进行播种精度控制和播种性能测试试验,结果表明:播种机的精度和性能均符合播种机的设计要求。 展开更多
关键词 小麦播种机 自动控制系统 机器深度学习 卷积神经网络算法 迁移学习
下载PDF
基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别 被引量:1
18
作者 刘帼巾 刘达明 +3 位作者 缪建华 杨雨泽 王乐康 刘琦 《电工技术学报》 EI CSCD 北大核心 2024年第4期1221-1233,共13页
自动转换开关(ATSE)是保证系统连续供电的设备,对其进行健康监测和故障诊断对系统的稳定运行具有重要意义。为了实现对ATSE的非侵入式故障识别,该文提出一种基于电流信号变分模态分解(VMD)的特征提取和改进灰狼算法(IGWO)优化深度置信网... 自动转换开关(ATSE)是保证系统连续供电的设备,对其进行健康监测和故障诊断对系统的稳定运行具有重要意义。为了实现对ATSE的非侵入式故障识别,该文提出一种基于电流信号变分模态分解(VMD)的特征提取和改进灰狼算法(IGWO)优化深度置信网络(DBN)相结合的故障诊断方法。该方法首先利用样本熵确定VMD分解次数并对故障电流进行分解;其次对分解后得到的本征模态函数进行小波包能量的提取,并利用IGWO对DBN网络结构参数进行优化;最后通过DBN将电流能量特征与ATSE的故障类型建立起映射关系从而完成最终的故障识别。所提IGWO采用了分段调节与非线性递减的衰减因子相结合的策略,以平衡算法全局搜索和局部搜索能力;并采用莱维飞行更新探狼的移动位置,来避免算法陷入早熟收敛。实验结果表明,该算法不仅能显著提高前期对参数寻优的训练速度,后续泛化实验的故障分类准确率也有98.78%的良好表现。 展开更多
关键词 优化灰狼算法 深度置信网络 自动转换开关 故障识别
下载PDF
基于迁移学习和逻辑回归模型的花卉分类研究 被引量:1
19
作者 陈卫国 莫胜撼 《南方农机》 2024年第1期139-143,151,共6页
【目的】不同种花卉之间的相似性以及同种花卉内部的多变性加大了花卉图像分类难度,其难点是要人工设计出能充分体现花卉颜色、形状和花瓣形态等特征的特征提取方法。传统的花卉图像分类方法的精度不高且模型的泛化能力较差,这些问题亟... 【目的】不同种花卉之间的相似性以及同种花卉内部的多变性加大了花卉图像分类难度,其难点是要人工设计出能充分体现花卉颜色、形状和花瓣形态等特征的特征提取方法。传统的花卉图像分类方法的精度不高且模型的泛化能力较差,这些问题亟待解决。【方法】课题组提出一种基于数据增强的VGG16迁移学习卷积神经网络提取花卉图像特征,再训练多类逻辑回归模型的花卉图像分类识别方法;并且通过在flowers17和flowers102花卉数据集上进行测试,来验证课题组所提出的花卉分类识别方法的有效性。【结果】课题组所提出的花卉分类识别方法在flowers17和flowers102数据集中分别达到了97.89%和92.10%的分类精度,高于现有其他花卉图像分类方法。【结论】通过预训练的深度人工神经网络提取的高区分度的花卉图像特征,优于人工设定的花卉图像特征,能训练出更高效精准的花卉识别分类器。基于本研究内容,下一步可对VGG16网络进行降维改进,让模型参数减少,从而实现快速实时应用。 展开更多
关键词 花卉图像分类 卷积神经网络 迁移学习 VGG16 逻辑回归模型
下载PDF
Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation
20
作者 Yanbin Liu Hongmei Chen Pu Mou 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期337-344,共8页
Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their struc... Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their structure and function in ecosystems,we investigated the spatial patterns and nitrogen(N)transfer of EM networks usingN labelling technique in a Mongolian scotch pine(Pinus sylvestris var.mongolica Litv.)plantation in Northeastern China.In August 2011,four plots(20 × 20 m)were set up in the plantation.125 ml 5 at.%0.15 mol/LNHNOsolution was injected into soil at the center of each plot.Before and 2,6,30 and 215 days after theN application,needles(current year)of each pine were sampled along four 12 m sampling lines.Needle total N andN concentrations were analyzed.We observed needle N andN concentrations increased significantly over time afterN application,up to 31 and0.42%,respectively.There was no correlation between needle N concentration andN/N ratio(R2=0.40,n=5,P=0.156),while excess needle N concentration and excess needleN/N ratio were positively correlated across different time intervals(R~2=0.89,n=4,P\0.05),but deceased with time interval lengthening.NeedleN/N ratio increased with time,but it was not correlated with distance.NeedleN/N ratio was negative with distance before and 6th day and 30th day,positive with distance at 2nd day,but the trend was considerably weaker,their slop were close to zero.These results demonstrated that EM networks were ubiquitous and uniformly distributed in the Mongolian scotch pine plantation and a random network.We found N transfer efficiency was very high,absorbed N by EM network was transferred as wide as possible,we observed N uptake of plant had strong bias forN andN,namely N fractionation.Understanding the structure and function of EM networks in ecosystems may lead to a deeper understanding of ecological stability and evolution,and thus provide new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems. 展开更多
关键词 Ectomycorrhizal networks Spatial patterns Nitrogen transfer Mongolian scotch pine plantation Stable isotope 15N labelling
下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部