Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of...Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.展开更多
可再生能源大规模、高密度的接入显著改变了电力系统静/动态特性,对系统建模、仿真、分析和控制带来了挑战。该文针对含不确定性的电力系统稳定性分析问题,引入微分包含理论,建立一种随机激励下电力系统低频振荡分析模型。针对含不确定...可再生能源大规模、高密度的接入显著改变了电力系统静/动态特性,对系统建模、仿真、分析和控制带来了挑战。该文针对含不确定性的电力系统稳定性分析问题,引入微分包含理论,建立一种随机激励下电力系统低频振荡分析模型。针对含不确定性的电力系统稳定性问题,采用线性多胞体(polytopic linear differential inclusion,PLDI)微分方法,将包含不确定性的随机激励表征为有限个元素的凸包。基于凸包李雅谱诺夫(Lyapunov)函数法推导多胞体系统稳定判据,并给出强阻尼系统约束条件;进而,基于Hankel范数逼近法,给出一种适用于大规模柔性互联系统的低频振荡分析方法。以简单两机系统、10机39节点系统验证所提出方法及稳定判据。仿真结果表明,该文所提方法能准确地刻画随机激励下的电力系统本质。展开更多
基金Project (No. 60374028) supported by the National Natural ScienceFoundation of China
文摘Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.
文摘可再生能源大规模、高密度的接入显著改变了电力系统静/动态特性,对系统建模、仿真、分析和控制带来了挑战。该文针对含不确定性的电力系统稳定性分析问题,引入微分包含理论,建立一种随机激励下电力系统低频振荡分析模型。针对含不确定性的电力系统稳定性问题,采用线性多胞体(polytopic linear differential inclusion,PLDI)微分方法,将包含不确定性的随机激励表征为有限个元素的凸包。基于凸包李雅谱诺夫(Lyapunov)函数法推导多胞体系统稳定判据,并给出强阻尼系统约束条件;进而,基于Hankel范数逼近法,给出一种适用于大规模柔性互联系统的低频振荡分析方法。以简单两机系统、10机39节点系统验证所提出方法及稳定判据。仿真结果表明,该文所提方法能准确地刻画随机激励下的电力系统本质。