期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption 被引量:7
1
作者 程显 段雄英 +3 位作者 廖敏夫 黄智慧 罗彦 邹积岩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第8期800-806,共7页
Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum ... Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero. 展开更多
关键词 hybrid circuit breaker vacuum arc SF6 arc transient recovery voltage di- electric recovery breaking capacity
下载PDF
Study on TRV of circuit breaker in two substation operational ways and its countermeasure
2
作者 李国亮 夏文华 李微微 《Journal of Measurement Science and Instrumentation》 CAS 2012年第4期393-396,共4页
To verify a vacuum breaker's feasibility,when a transformer substation chooses a vacuum circuit breaker,it takes two different actual operational ways to cut off a transformer.This paper,using the power system com... To verify a vacuum breaker's feasibility,when a transformer substation chooses a vacuum circuit breaker,it takes two different actual operational ways to cut off a transformer.This paper,using the power system computer aided design/electro magnetic transient in DC system(PSCAD/EMTDC)software,simulates the substation system and studies transient recovery voltage(TRV)caused by the two different ways which can cut off a with load transformer or a no-load transformer.Simulation and calculation results show that TRV indexes of the first way are much higher than that of the second one,and their TRV indexes are both in a permissible range.The breaker is proved to be available.Besides,this paper proves that paralleling resistance has a good effect when the indexes exceed the standard.The resistance value depends on specific circumstances. 展开更多
关键词 transient recovery voltage(TRV) power system computer aided design/electro magnetic transient in DC system (PSCAD/EMTDC) TRANSFORMER vacuum circuit breaker
下载PDF
Dynamic reactive power planning method for CSP-PV hybrid power generation system
3
作者 ZHANG Hong DONG Hai-ying +2 位作者 CHEN Zhao HUANG Rong DING Kun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期258-266,共9页
Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulatio... Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost. 展开更多
关键词 transient voltage recovery index sensitivity index dynamic reactive power planning optimization particle swarm optimization based on differential evolution(DE-PSO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部