Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper de...Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper deals with the conceptual design of CTJs via three approaches: parallelogram based method, straight- line motion mechanism based method and combination based method. Typical emerging CTJ designs are reviewed by explaining their design principles and qualitatively analyzing their characteristics. New CTJs are proposed using three approaches, including an asymmetric double parallelogram mechanism with slaving mechanism, several compact and symmetric double parallelogram mechanisms with slaving mechanisms and a general CTJ using the center drift compensation and a CTJ using Roberts linkage and several combination designs. This paper provides an overview of the current advances/progresses of CTJ designs and lays the foundation for further optimization, quantitative analysis and characteristic comparisons.展开更多
文摘Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper deals with the conceptual design of CTJs via three approaches: parallelogram based method, straight- line motion mechanism based method and combination based method. Typical emerging CTJ designs are reviewed by explaining their design principles and qualitatively analyzing their characteristics. New CTJs are proposed using three approaches, including an asymmetric double parallelogram mechanism with slaving mechanism, several compact and symmetric double parallelogram mechanisms with slaving mechanisms and a general CTJ using the center drift compensation and a CTJ using Roberts linkage and several combination designs. This paper provides an overview of the current advances/progresses of CTJ designs and lays the foundation for further optimization, quantitative analysis and characteristic comparisons.