期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Bifunctional flexible electrochromic energy storage devices based on silver nanowire flexible transparent electrodes 被引量:1
1
作者 He Zhang Fangyuan Sun +8 位作者 Ge Cao Dongyan Zhou Guofan Zhang Jiayun Feng Shang Wang Fengyu Su Yanqing Tian Yan Jun Liu Yanhong Tian 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期307-316,共10页
Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(... Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics. 展开更多
关键词 electrochromic device energy storage device silver nanowires flexible transparent electrode
下载PDF
Recent advances in nanofiber-based flexible transparent electrodes
2
作者 Houchao Zhang Xiaoyang Zhu +11 位作者 Yuping Tai Junyi Zhou Hongke Li Zhenghao Li Rui Wang Jinbao Zhang Youchao Zhang Wensong Ge Fan Zhang Luanfa Sun Guangming Zhang Hongbo Lan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期144-198,共55页
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna... Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics. 展开更多
关键词 NANOFIBER flexible transparent electrodes additive manufacturing flexible optoelectronic devices
下载PDF
High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes 被引量:4
3
作者 He Zhang Shang Wang +6 位作者 Yanhong Tian Jiayue Wen Chunjin Hang Zhen Zheng Yilong Huang Su Ding Chenxi Wang 《Nano Materials Science》 CAS 2020年第2期164-171,共8页
Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance a... Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance and conductivity of the electrodes.Therefore,highly purified Cu NWs without oxidation are vital for high-performance FTEs.Herein,a facile and effective purification process is introduced to purify Cu NWs in a water and n-hexane system,which takes advantage of the differences in hydrophilicity between Cu NWs and Cu NPs caused by their different adsorption affinities to octadecylamine(ODA).At the same sheet resistance,the transmittance of the purified Cu NW-based FTEs improved approximately 2%compared to that of non-purified Cu NW-based FTEs.Immersion of the electrode in glacial acetic acid removed the surface organics and oxides.After only 40 s of treatment,the sheet resistance dramatically decreased from 10^5 Ohm/sq to 31 Ohm/sq with a transmittance of 85%.In addition,the Cu NW-based FTE conductors showed excellent flexibility(remaining stable after 1000 bending cycles).The Cu NW-based FTEs were further applied to fabricate a flexible transparent heater.At a voltage of 10 V,the temperature of the heater reached 73℃,demonstrating the potential applications of this material in various fields. 展开更多
关键词 Copper nanowires PURIFICATION transparent electrode Flexible electronics
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes
4
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids Assembly Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
Stably doped graphene transparent electrode with improved lightextraction for efficient flexible organic light-emitting diodes
5
作者 Lai-Peng Ma Zhongbin Wu +6 位作者 Yukun Yan Dingdong Zhang Shichao Dong Jinhong Du Dongge Ma Hui-Ming Cheng Wencai Ren 《Nano Research》 SCIE EI CSCD 2023年第11期12788-12793,共6页
Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindere... Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode.Here,we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE.A p-type dopant aci-nitromethane-tris(pentafluorophenyl)borane(ANBCF)was synthesized and deposited on graphene FTE to form an aperiodic nanostructure,which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection.The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency(EQE)and power efficiency(PE)out-performing most flexible graphene OLEDs of comparable structure.This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs. 展开更多
关键词 GRAPHENE transparent electrode flexible organic light-emitting diode(OLED) DOPING light-extraction
原文传递
Highly stable,stretchable,and transparent electrodes based on dualheaded Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor
6
作者 Yangyang Wang Jingyi Kong +5 位作者 Ruifang Xue Jianping Wang Min Gong Xiang Lin Liang Zhang Dongrui Wang 《Nano Research》 SCIE EI CSCD 2023年第1期1558-1567,共10页
Stretchable and transparent electrodes(STEs)based on silver nanowires(AgNWs)have garnered considerable attention due to their unique optoelectronic features.However,the low oxidation resistance of AgNWs severely limit... Stretchable and transparent electrodes(STEs)based on silver nanowires(AgNWs)have garnered considerable attention due to their unique optoelectronic features.However,the low oxidation resistance of AgNWs severely limits the reliability and durability of devices based on such STEs.The present work reports a type of core-sheath silver@gold nanowires(Ag@Au NWs)with a morphology resembling dual-headed matchsticks and an average Au sheath thickness of 2.5 nm.By starting with such Ag@Au NWs,STEs with an optical transmittance of 78.7%,a haze of 13.0%,a sheet resistance of 13.5Ω·sq.−1,and a maximum tensile strain of 240%can be formed with the aid of capillary-force-induced welding.The resultant STEs exhibit exceptional oxidation resistance,high-temperature resistance,and chemical/electrochemical stability owing to the conformal and dense Au sheath.Furthermore,non-enzymatic glucose biosensors are fabricated employing the Ag@Au NW STEs.The electrocatalytic oxidation currents are proportional to glucose concentrations with a high sensitivity of 967μA·mM−1·cm−2 and a detection limit of 125μM over a detection range of 0.6 to 16 mM.Additionally,the biosensors demonstrate an appealing robustness and antiinterference characteristics,high repeatability,and great stability that make them adequate for practical use. 展开更多
关键词 Ag@Au core-sheath nanowire stretchable transparent electrode glucose biosensor capillary force stretchable electronics
原文传递
Ultra-Highly Cross-Aligned AgNWs Network by a Facile Liquid-Bridge Assisted Couette-Flow Solution Process:Toward Mass-Producing High-Performance Flexible Transparent Electrodes
7
作者 Xiaoxun Li Lili Meng +3 位作者 Min Zhang Kejie Zhang Lei Jiang Huan Liu 《CCS Chemistry》 CSCD 2023年第12期2855-2865,共11页
Cross-aligned silver nanowires(CA-AgNWs),a unique networkwidely used in flexible transparent electrodes(FTEs),have been well developed using various solution processes.However,these approaches suffer from limitations ... Cross-aligned silver nanowires(CA-AgNWs),a unique networkwidely used in flexible transparent electrodes(FTEs),have been well developed using various solution processes.However,these approaches suffer from limitations of both the large alignment deviation and solution waste,especially in large-area fabrication,which deteriorates the performance of FTEs.Herein,we developed a facile liquid-bridge assisted Couette-flow solution shearing approach,which enables aligning AgNWs into a highly ordered horizontal array over a large area(120 cm^(2)).Particularly,the alignment deviation,evaluated by the statistic,full width at half-maximum,is rather small with a value of ca.12.6,several times lower than those made by other solution processes.The fibrous liquid-bridge is responsible for transferring liquid steadily onto the substrate,during which process AgNWs are aligned roughly by the solution shearing.It is worth noting that the enhanced shearing force(SF)by Couetteflow allows for further alignment.Consequently,the ultra-highly CA-AgNWs network was prepared,leading to a high-performance FTE with high conductivity(7Ωsq^(-1)),high transparency(93%),long lifetime(over 180 days),good adhesion-stability(200 times tape test),and good flexibility.Moreover,the strategy is applicable for mass-production,benefiting the practical applications of high-performance optoelectronic devices. 展开更多
关键词 flexible transparent electrode AgNWs cross-aligned Couette-flow solution shearing
下载PDF
“Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness 被引量:1
8
作者 Yang Chen Juanyong Wan +7 位作者 Guiying Xu Xiaoxiao Wu Xinqi Li Yunxiu Shen Fu Yang Xuemei Ou Yaowen Li Yongfang Li 《Science China Chemistry》 SCIE EI CSCD 2022年第6期1164-1172,共9页
Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the diffi... Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application. 展开更多
关键词 flexible organic solar cells flexible transparent electrodes silver nanowires POLYDOPAMINE mechanical stability
原文传递
A Rapid Synthesis of High Aspect Ratio Silver Nanowires for High-Performance Transparent Electrodes
9
作者 Tao Cheng Yizhou Zhang +2 位作者 Wenyong Lai Yao Chen Wei Huang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2015年第1期147-151,共5页
A rapid,simple and cost-effective polyol method has been developed for the synthesis of silver nanowires with high aspect ratio and high purity.The aspect ratios of the silver nanowires as high as ca.1000(average leng... A rapid,simple and cost-effective polyol method has been developed for the synthesis of silver nanowires with high aspect ratio and high purity.The aspect ratios of the silver nanowires as high as ca.1000(average length 40μm and some even as long as 80μm,diameter 50-100 nm)were obtained via optimizing the reaction conditions.Transparent electrodes with excellent optoelectronic performances(optical transmittance of 90%,sheet resistance of 23.2Ω/□and optical transmittance of 87%,sheet resistance of 19.7Ω/□)comparable to commercial ITO were fab-ricated via simple spin coating the resulting silver nanowires onto the glass substrates.The high optoelectronic per-formances and the facile all-solution process of the as-prepared transparent electrodes render them rather promising candidates for use in cost-effective large-area optoelectronic devices. 展开更多
关键词 silver nanowires transparent electrodes high aspect ratio all-solution process large-area electronics
原文传递
Solution‑Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency 被引量:2
10
作者 Juanyong Wan Yonggao Xia +8 位作者 Junfeng Fang Zhiguo Zhang Bingang Xu Jinzhao Wang Ling Ai Weijie Song Kwun Nam Hui Xi Fan Yongfang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期39-52,共14页
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti... Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability. 展开更多
关键词 Solution-processed transparent conducting electrode Flexible organic solar cell PEDOT:PSS Trifluoromethanesulfonic acid doping Solution processing
下载PDF
Efficient Semi‑Transparent Wide‑Bandgap Perovskite Solar Cells Enabled by Pure‑Chloride 2D‑Perovskite Passivation 被引量:1
11
作者 Liu Yang Yongbin Jin +14 位作者 Zheng Fang Jinyan Zhang Ziang Nan Lingfang Zheng Huihu Zhuang Qinghua Zeng Kaikai Liu Bingru Deng Huiping Feng Yujie Luo Chengbo Tian Changcai Cui Liqiang Xie Xipeng Xu Zhanhua Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期35-48,共14页
Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these iss... Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these issues by in-situ forming a well-defined 2D perovskite(PMA)_(2)PbCl_(4)(phenmethylammonium is referred to as PMA)passivation layer on top of the WBG active layer.The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase.The(PMA)_(2)PbCl_(4)forms improved type-I energy level alignment with the WBG perovskite,reducing the electron recombination at the perovskite/hole-transport-layer interface.Applying this strategy in fabricating semi-transparent WBG perovskite solar cells(indium tin oxide as the back electrode),the V_(OC)deficits can be reduced to 0.49 V,comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes.Consequently,we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V_(OC)of 1.23 V. 展开更多
关键词 Wide-bandgap perovskite solar cells transparent back electrodes Defect passivation Bulky cations
下载PDF
Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption
12
作者 Guobin Jia Jonathan Plentz +4 位作者 Andrea Dellith Christa Schmidt Jan Dellith Gabriele Schmidl Gudrun Andr? 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期47-59,共13页
In this contribution,inspired by the excellent resource management and material transport function of leaf veins,the electrical transport function of metallized leaf veins is mimicked from the material transport funct... In this contribution,inspired by the excellent resource management and material transport function of leaf veins,the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks.By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre,certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films,combined with a broadband optical transmission of above 80%in the UV–VIS–IR range.Additionally,the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization.In particular,the high current density transport capability of the electrode of>6000 A cm^−2 was demonstrated.These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to<10%of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells,high power density Li-ion batteries,and supercapacitors. 展开更多
关键词 Biomimic leaf vein network transparent conducting electrode Sheet resistance Metal consumption
下载PDF
Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors 被引量:9
13
作者 Jun Wang Jinting Jiu +6 位作者 Teppei Araki Masaya Nogi Tohru Sugahara Shijo Nagao Hirotaka Koga Peng He Katsuaki Suganuma 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期51-58,共8页
Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is ... Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is still dramatically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone(PVP) layer adsorbed on the nanowire surface acts as an electrically insulating barrier at wire–wire junctions, and some devastating post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes. In this work, a simple and rapid pre-treatment washing method was proposed to reduce the thickness of PVP layer from 13.19 to0.96 nm and improve the contact between wires. Ag NW electrodes with sheet resistances of 15.6 and 204 X sq-1have been achieved at transmittances of 90 and 97.5 %, respectively. This method avoided any post-treatments and popularized the application of high-performance Ag NW transparent electrode on more substrates. The improved Ag NWs were successfully employed in a capacitive pressure sensor with high transparency, sensitivity, and reproducibility. 展开更多
关键词 Silver nanowire Pre-treatment transparent electrode Pressure sensor
下载PDF
Transparent Supercapacitors: From Optical Theories to Optoelectronics Applications
14
作者 Sang-Woo Kim Sang-Young Lee 《Energy & Environmental Materials》 2020年第3期265-285,共21页
The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enab... The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields. 展开更多
关键词 energy storage FLEXIBILITY OPTOELECTRONICS transparent conductive electrodes transparent supercapacitors
下载PDF
Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)electrodes with enhanced conductivity and transparency for semitransparent perovskite solar cells
15
作者 Yongshun Wang Yuxi Dou +7 位作者 Zhengzhe Wu Yingxin Tian Yiming Xiong Juan Zhao De Fang Fuzhi Huang Yi-Bing Cheng Jie Zhong 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第2期206-216,共11页
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is an important organic electrode for solution-processed low-cost electronic devices.However,it requires doping and post-solvent treatment to improve i... Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is an important organic electrode for solution-processed low-cost electronic devices.However,it requires doping and post-solvent treatment to improve its conductivity,and the chemicals used for such treatments may affect the device fabrication process.In this study,we developed a novel route for exploiting ultrafast lasers(femtosecond and picosecond laser)to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices.The conductivity of the PEDOT:PSS film was improved by three orders of magnitude(from 3.1 to 1024 S·cm^(–1)),and high transparency of up to 88.5%(average visible transmittance,AVT)was achieved.Raman and depthprofiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced,thereby increasing the carrier concentration.The surface PSS content also decreased,which is beneficial to the carrier mobility,resulting in significantly enhanced electrical conductivity.Further,we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes,and a power conversion efficiency of 7.39%was achieved with 22.63%AVT.Thus,the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics. 展开更多
关键词 PEDOT:PSS ultrafast laser transparent electrode ST-PSCs PATTERNING
原文传递
Review of fabrication methods of large-area transparent graphene electrodes for industry 被引量:1
16
作者 Petri MUSTONEN David MACKENZIE Harri LIPSANEN 《Frontiers of Optoelectronics》 EI CSCD 2020年第2期91-113,共23页
Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes;it has low sheet resistance,high optical transmission and is flexible.Whereas the most common transparent e... Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes;it has low sheet resistance,high optical transmission and is flexible.Whereas the most common transparent electrode material,tin-doped indium-oxide(ITO)is brittle,less transparent and expensive,which limit its compatibility in flexible electronics as well as in low-cost devices.Here we review two large-area fabrication methods for graphene based transparent electrodes for industry:liquid exfoliation and low-pressure chemical vapor deposition(CVD).We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results.State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5,slightly over the minimum required for industry of 35,while CVD reaches as high as 419. 展开更多
关键词 transparent electrodes GRAPHENE liquid exfoliation chemical vapor deposition(CVD)
原文传递
Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process towards highly stretchable and transparent capacitive touch sensor array
17
作者 Yifan Gu Zhiguang Qiu +7 位作者 Simu Zhu Hao Lu Lisha Peng Gaofan Zhang Ziyi Wu Xuchun Gui Zong Qin Bo-ru Yang 《Nano Research》 SCIE EI CSCD 2023年第8期11303-11311,共9页
Stretchable transparent electrode(STE)plays a key role in numerous emerging applications as an indispensable component for future stretchable devices.The embedded STE,as a promising candidate,possesses balanced perfor... Stretchable transparent electrode(STE)plays a key role in numerous emerging applications as an indispensable component for future stretchable devices.The embedded STE,as a promising candidate,possesses balanced performances and facile preparation procedures.However,it still suffers from the defects of conductive materials caused by the transferring,which results in the irreversible failure of devices.In this work,a patternable silver nanowire(AgNW)STE was fabricated by a plasma-enhanced cryo-transferring(PEC-transferring)process.Owing to the plasma-induced sintering,the AgNW network obtained remarkable improvement in robustness,which ensured the intact network after transferring and thus led to superior tensile electrical properties of the STE.Furthermore,serpentine patterns were utilized to optimize the tensile electrical properties of the STE,which achieved a figure of merit of 292.8 and 150%resistance changing under 50%strain.As a practical application,a 4×3 array of the mutual-capacitive type stretchable touch sensors was demonstrated for future touch sensors in stretchable devices.The PEC-transferring process opened a new avenue for patternable embedded STEs and exhibited its high potential in wearable electronics and the Internet of Thing devices. 展开更多
关键词 stretchable transparent electrode silver nanowire plasma treatment transferring process SERPENTINE
原文传递
High-efficiency stretchable organic light-emitting diodes based on ultra-flexible printed embedded metal composite electrodes
18
作者 Lan-Qian Yao Yue Qin +6 位作者 Xiang-Chun Li Qian Xue Fang Liu Tao Cheng Guan-Jun Li Xinwen Zhang Wen-Yong Lai 《InfoMat》 SCIE CSCD 2023年第5期28-39,共12页
Stretchable organic light-emitting diodes(OLEDs)are important components for flexible/wearable electronics.However,the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid coun... Stretchable organic light-emitting diodes(OLEDs)are important components for flexible/wearable electronics.However,the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts,one of the main reasons being the lack of ideal flexible transparent electrodes.Herein,we propose and develop a printed embedded metal composite electrode(PEMCE)strategy that enables the fabrication of ultra-thin,highly flexible transparent electrodes with robust mechanical properties.With the flexible transparent electrodes serves as the anodes,flexible/stretchable white OLEDs have been successfully constructed,achieving a current efficiency of up to 77.4 cd A^(-1)and a maximum luminance of 34787 cd m^(-2).The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs,which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes.The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag-mesh account for the significant increase in current efficiency.Remarkably,the electroluminescence performance still retains~83%of the original luminance even after bending the device 2000 cycles at a radii of~0.5 mm.More importantly,the device can withstand tensile strains of up to~100%,and even mechanical deformation of 90%tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%.The results confirm that the PEMCE strategy is effective for constructing ultra-flexible transparent electrodes,showing great promise for use in a variety of flexible/stretchable electronics. 展开更多
关键词 flexible electrodes flexible electronics printed embedded metal composite electrodes stretchable OLEDs transparent electrodes
原文传递
Uniform,Highly Conductive,and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique 被引量:40
19
作者 Anuj R.Madaria Akshay Kumar +1 位作者 Fumiaki N.Ishikawa Chongwu Zhou 《Nano Research》 SCIE EI CSCD 2010年第8期564-573,共10页
Silver nanowire films are promising alternatives to tin-doped indium oxide(ITO)films as transparent conductive electrodes.In this paper,we report the use of vacuum filtration and a polydimethylsiloxane(PDMS)-assisted ... Silver nanowire films are promising alternatives to tin-doped indium oxide(ITO)films as transparent conductive electrodes.In this paper,we report the use of vacuum filtration and a polydimethylsiloxane(PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates,bringing advantages such as the capability of patterned transfer,the best performance among various ITO alternatives(10Ω/sq at 85%transparency),and good adhesion to the underlying substrate,thus eliminating the previously reported adhesion problem.In addition,our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes,making it a scalable process.Furthermore,use of an anodized aluminum oxide(AAO)membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency.Using this transfer technique,we obtained silver nanowire films on a flexible polyethylene terephthalate(PET)substrate with a transparency of 85%,a sheet resistance of 10Ω/sq,with good mechanical flexibility.Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume。 展开更多
关键词 Ag nanowire PDMS transfer transparent electrode flexible electronics percolation network
原文传递
Recent advances in semitransparent perovskite solar cells 被引量:5
20
作者 Muhammad Mujahid Chen Chen +2 位作者 Jian Zhang Chuannan Li Yu Duan 《InfoMat》 SCIE CAS 2021年第1期101-124,共24页
The environmental challenges across the world step up the researcher's interest in different energy resources.Semitransparent perovskite solar cells(STPSCs)could expedite generation of electricity as well as shows... The environmental challenges across the world step up the researcher's interest in different energy resources.Semitransparent perovskite solar cells(STPSCs)could expedite generation of electricity as well as shows reassuring its significance in flexible electronics and building-integrating photovoltaic as so forth in the next decade.It is highly recommended to endorse the relevance of semitransparent solar devices to fulfill the required level of energy even by using the roofs and windows of the buildings.In this review article,we pay more attention to recent developments of ST-PSCs.Herein,a succinct overview of latest research about semitransparent solar cell technologies and ST-PSCs is summarized.Moreover,the strategies to enhance the transparency of solar cells are described utilizing structure,transparent electrodes,perovskite film formation,tandem solar cells,color tuning,and human eye perception.Last but not least is that the serious concerns about stability of ST-PSCs are vividly reviewed. 展开更多
关键词 color tuning perovskite devices semitransparent solar cells STABILITY transparent electrodes
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部