The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the ar...The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the arc column were described. According to the results from theoretical calculations, it was found that: (1) The powder’s transporting velocity is much lower than the plasma fluid’s; (2) The powders axial transporting velocity presents “valley-shape distribution” along plasma arc column traverse section when surfacing current is greater than 100 A . When the arc current exceeding 100 A , the powders coming through the center field of arc column will transport slower than the powder through the outer-around field of arc column. It is in the field where the temperature is in the range of 9 000 K ~11 000 K that the particles can achieve its maximum axial acceleration in the argon plasma space. (3) For the given powder mass density, the smaller its size is, the greater its acceleration and the greater its averaged transporting velocity will be in the arc space; (4) For the given powder size, the greater its mass density is, the smaller its acceleration and averaged velocity will be in the arc space.展开更多
In current research about nanofluid convection heat transfer, random motion of nanoparticles in the liquid distribution problem mostly was not considered. In order to study on the distribution of nanoparticles in liqu...In current research about nanofluid convection heat transfer, random motion of nanoparticles in the liquid distribution problem mostly was not considered. In order to study on the distribution of nanoparticles in liquid, nanofluid transport model in pipe is established by using the continuity equation, momentum equation and Fokker-Planck equation. The velocity distribution and the nanoparticles distribution in liquid are obtained by numerical calculation, and the effect of particle size and particle volume fraction on convection heat transfer coefficient of nanofluids is analyzed. The result shows that in high volume fraction ( 0 _-- 0.8% ), the velocity distribution of nanofluids characterizes as a "cork-shaped" structure, which is significantly different from viscous fluid with a parabolic distribution. The convection heat transfer coefficient increases while the particle size of nanoparticle in nanofluids decreases. And the convection heat transfer coefficient of nanofluids is in good agreement with the experimental result both in low (0 ~〈 0.1% ) and high ( q = 0.6% ) volume fractions. In presented model, Brown motion, the effect of interactions between nanoparticles and fluid coupling, is also considered, but any phenomenological parameter is not introduced. Nanoparticles in liquid transport distribution can be quantitatively calculated by this model.展开更多
目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则...目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则(Lever Rule),对异质材料熔覆界面的多元素传输进行模拟,采用扫描电子显微镜(SEM)与能谱仪(EDS)观察组织结构和元素分布,对比模拟结果分析多组沉积层宏观形貌和元素分布特征。结果沉积过程中,熔池的流动与材料导热对温度的传输起着重要作用,前端对流不断地将已熔化的基材金属运输至熔池中部,后端对流则将卷积的Fe元素和Co元素进一步混合。最终沉积层的宏观形貌平均误差为2.67%,主要元素Fe、Co、Cr的质量分数误差分别为0.64%、1.27%、0.31%。结论Fe元素浓度整体区域分布相对均匀,但在沉积层底部,Fe元素浓度迅速升高,Co元素浓度随沉积深度加深逐渐降低,Cr元素在沉积层中部富集的分布特性。该优化后的模型可以准确模拟异质合金沉积过程中的温度场、流场与质量传输过程。展开更多
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
文摘The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the arc column were described. According to the results from theoretical calculations, it was found that: (1) The powder’s transporting velocity is much lower than the plasma fluid’s; (2) The powders axial transporting velocity presents “valley-shape distribution” along plasma arc column traverse section when surfacing current is greater than 100 A . When the arc current exceeding 100 A , the powders coming through the center field of arc column will transport slower than the powder through the outer-around field of arc column. It is in the field where the temperature is in the range of 9 000 K ~11 000 K that the particles can achieve its maximum axial acceleration in the argon plasma space. (3) For the given powder mass density, the smaller its size is, the greater its acceleration and the greater its averaged transporting velocity will be in the arc space; (4) For the given powder size, the greater its mass density is, the smaller its acceleration and averaged velocity will be in the arc space.
基金supported by National Natural Science Foundation of China(Grant No.51375090)
文摘In current research about nanofluid convection heat transfer, random motion of nanoparticles in the liquid distribution problem mostly was not considered. In order to study on the distribution of nanoparticles in liquid, nanofluid transport model in pipe is established by using the continuity equation, momentum equation and Fokker-Planck equation. The velocity distribution and the nanoparticles distribution in liquid are obtained by numerical calculation, and the effect of particle size and particle volume fraction on convection heat transfer coefficient of nanofluids is analyzed. The result shows that in high volume fraction ( 0 _-- 0.8% ), the velocity distribution of nanofluids characterizes as a "cork-shaped" structure, which is significantly different from viscous fluid with a parabolic distribution. The convection heat transfer coefficient increases while the particle size of nanoparticle in nanofluids decreases. And the convection heat transfer coefficient of nanofluids is in good agreement with the experimental result both in low (0 ~〈 0.1% ) and high ( q = 0.6% ) volume fractions. In presented model, Brown motion, the effect of interactions between nanoparticles and fluid coupling, is also considered, but any phenomenological parameter is not introduced. Nanoparticles in liquid transport distribution can be quantitatively calculated by this model.
文摘目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则(Lever Rule),对异质材料熔覆界面的多元素传输进行模拟,采用扫描电子显微镜(SEM)与能谱仪(EDS)观察组织结构和元素分布,对比模拟结果分析多组沉积层宏观形貌和元素分布特征。结果沉积过程中,熔池的流动与材料导热对温度的传输起着重要作用,前端对流不断地将已熔化的基材金属运输至熔池中部,后端对流则将卷积的Fe元素和Co元素进一步混合。最终沉积层的宏观形貌平均误差为2.67%,主要元素Fe、Co、Cr的质量分数误差分别为0.64%、1.27%、0.31%。结论Fe元素浓度整体区域分布相对均匀,但在沉积层底部,Fe元素浓度迅速升高,Co元素浓度随沉积深度加深逐渐降低,Cr元素在沉积层中部富集的分布特性。该优化后的模型可以准确模拟异质合金沉积过程中的温度场、流场与质量传输过程。