Background: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has ...Background: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage.Methods: C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing(scRNA-seq) was then carried out on TCS-or mock-treated mice livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor(TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the cellular and molecular events after TCS exposure. To verify the TCS-induced liver fibrosis,the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson’s trichrome and Sirius red stainings. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies.Results: We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control groups profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells(HSCs)were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition,other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interactionmediated cellular communication in promoting liver fibrosis.Conclusions: TCS modulates the cellular activities and fates of several specific cell types(including hepatocytes, HSCs,endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis.Overall, we provide the first comprehensive single-cell atlas of mice livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.展开更多
BACKGROUND Triclosan-coated vicryl plus suture(Ethicon, Inc.) was developed to reduce microbial colonisation during surgical procedures. However, its effect on wound healing and surgical site infections remain unclear...BACKGROUND Triclosan-coated vicryl plus suture(Ethicon, Inc.) was developed to reduce microbial colonisation during surgical procedures. However, its effect on wound healing and surgical site infections remain unclear after hip and knee arthroplasty surgery.AIM To determine the effect of triclosan-coated sutures(TCS) vs non-coated sutures on wound healing, following primary hip and knee arthroplasties.METHODS A single-centred, double-blind randomised controlled trial(RCT) was undertaken. We randomly allocated patients to receive either the triclosan-coated sutures(TCS vicryl plus) or non-coated sutures(NCS vicryl) during the closure of unilateral primary hip and knee arthroplasties. We utilised the ASEPSIS wound scoring system to evaluate wound healing for the first 6 weeks post-operatively.RESULTS One hundred and fifty patients undergoing primary total hip or knee arthroplasty over a one-year period were included. Eighty-one were randomised to the TCS group and 69 to the NCS group. Despite no statistically significant difference in the ASEPSIS scores among the study groups(P = 0.75), sensitivity analysis using the Mann Whitney test(P = 0.036) as well as assessment of the wound complications at 6 weeks follow up, demonstrated significantly higher wound complication rates in the TCS group(8 vs 1, P = 0.03).CONCLUSION No clear advantage was demonstrated for using the TCS. However, larger multicentred RCTs are required to validate their use in hip and knee arthroplasty surgery.展开更多
Periodontitis is a highly prevalent,chronic,non-specific,and immunologically devastating disease of periodontal tissues,caused by microbial infection.This study aims to examine the efficacy and protective mechanism of...Periodontitis is a highly prevalent,chronic,non-specific,and immunologically devastating disease of periodontal tissues,caused by microbial infection.This study aims to examine the efficacy and protective mechanism of triclosan(TCS),a bisphenolic,non-cationic component of oral care products,against periodontal inflammation induced by lipopolysaccharide purified from Porphyromonas gingivalis(LPS-PG).TCS markedly downregulated interleukin-6(IL-6),IL-8,and IL-15 in human periodontal ligament fibroblasts(HPDLFs)treated with LPS-PG.By using a liquid chromatography-tandem mass spectrometry(LC-MS/MS)approach,318 differentially expressed proteins(161 upregulated and 157 downregulated)were identified in TCS-pretreated HPDLFs.TCS upregulated HSPA5 and HSP90B1 but downregulated HSPA2.Besides,TCS upregulated miR-548i in HPDLFs,which downregulated IL-15.These results indicate that TCS attenuates the activation of HPDLFs and downregulates the inflammatory cytokines through various mechanisms,thus highlighting its protective role in periodontal inflammation.展开更多
This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dio...This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.展开更多
Aim: Oral malodor (halitosis) is a widespread condition caused by oral bacteria, particularly sulfur compound-producing species. This study assessed the effect of a triclosan/copolymer-containing dentifrice and a nove...Aim: Oral malodor (halitosis) is a widespread condition caused by oral bacteria, particularly sulfur compound-producing species. This study assessed the effect of a triclosan/copolymer-containing dentifrice and a novel toothbrush with attached tongue cleaner on oral malodor and on the bacteria colonizing the dorsal surface of the tongue. Materials and Methods: 14 adult subjects with oral malodor defined as organoleptic scores ≥ 3 (scale 0 - 5) and mouth air sulfur levels ≥ 250 ppb participated in this study. Subjects were examined at baseline and after 28 days use of the triclosan dentifrice and toothbrush/tongue cleaner for: 1) organoleptic assessment;2) mouth air sulfur levels;3) tongue coating;and, 4) dorsal tongue surface microorganisms. Total bacterial numbers were assayed by microscopy. Dot-blot hybridization was used to assess a panel of 20 oral bacteria. Results: After 28 days, all subjects had significantly reduced organoleptic scores and mouth air sulfur levels compared to baseline (p 70% reduction in microbial numbers (p Enterococcus faecalis (p Peptostreptococcus micros (p Prevotella melaninogenica (p Porphyromonas gingivalis (p Solobacterium moorei展开更多
Purpose: Bacterial biofilm develop on the surfaces of urinary catheter and proceed to cause full blown bacterial infections and sepsis. Urinary catheters, infection rates increase with the duration of catheterization ...Purpose: Bacterial biofilm develop on the surfaces of urinary catheter and proceed to cause full blown bacterial infections and sepsis. Urinary catheters, infection rates increase with the duration of catheterization at rates of per day with virtually all of those who undergo long-term catheterization becoming infected. Also antibiotics results in the adaptation and development of resistance leading to treatment failure, prolonged hospitalization, increased costs of care, and increased mortality. Methods: In the present study total 200 used urinary catheters were studied from the different hospitals of Amravati city in 2015-2016. Different bacterial uropathogens were isolated by conventional method and biofilm formation was studied by tissue culture plate (TCP). Antibiotic sensitivity was performed by disc diffusion method. Minimum inhibitory concentration (MIC) and Minimum biofilm eradicating concentration (MBEC) of triclosan was determined by TCP. Results: Out of total samples 93% are contaminated. Around 59% urinary catheters contain mixed consortia. Pseudomonas aeruginosa was found to be the strong biofilm forming and multidrug resistant organism. The most effective drug over seven bacteria isolates were chloramphenicol. Triclosan was used to test against the strong and moderate biofilm forming isolates the MIC of triclosan ranged between 1.5 and 1000 μg/ml and MBEC was between 800 and 3200 μg/ml Conclusions: From the study it was concluded that female are more prone to be infected with catheter associated infection. Pseudomonas aeruginosa was found to be deadly caused of infection, as it is highly resistant to antibiotics. Also triclosan showed effective result on the bacterial uropathogens.展开更多
Triclosan(TCS)has been manufactured as an antibacterial compound for half a century.Currently,it is widely used in various personal care products;however,its potential adverse effects raise a lot of attention.Here,we ...Triclosan(TCS)has been manufactured as an antibacterial compound for half a century.Currently,it is widely used in various personal care products;however,its potential adverse effects raise a lot of attention.Here,we create a long-term oral administration mouse model and identify the corresponding hepatotoxicity of TCS.We discover that daily intragastric administration of 10 mg/kg TCS to mice for 12 weeks results in severe hepatic fibrosis.Further study displays that hepatic iron increased 18%,23%and 29%upon oral TCS treatment for4,8 and 12 weeks,respectively.Accompanied by hepatic iron variation,splenic and duodenal iron are increased,which indicates systemic iron disorder.Not only excessive iron accumulated in the liver,abnormal hepatic malondialdehyde,prostaglandin synthase 2 and glutathione peroxidase 4 are pointed to ferroptosis.Additional study uncovers that hepcidin expression increases 7%,10%,4%in serum and 2.4-,4.8-,and 2.3-fold on transcriptional levels upon TCS exposure for 4,8 and 12 weeks,individually.Taken together,the mice in the TCS-treated group show disordered systemic iron homeostasis via the upregulated hepatic hepcidin-ferroportin axis.Meanwhile,both hepatic iron overload(systemic level)and hepatocyte ferroptosis(cellular level)are accused of TCS-induced liver fibrosis.Ferriprox■,an iron scavenger,significantly ameliorates TCS-induced liver fibrosis.In summary,this study confirms the impact of TCS on liver fibrosis;a critical signal pathway is also displayed.The significance of the current study is to prompt us to reevaluate the“pros and cons”of TCS applications.展开更多
Microplastics(MPs)are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms.The effects of polystyrene microplastics of different particle sizes on the accumul...Microplastics(MPs)are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms.The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis,its toxic effects,and the transmission of resistance genes were evaluated.The results showed that co-exposure to polystyrene(PS-MPs)adsorbed with triclosan(TCS)caused the accumulation of triclosan in the intestine with the following accumulation capacity:TCS+5μm PS group>TCS group>TCS+20μm PS group>TCS+0.1μm PS group.All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes.The TCS+20μm PS group exhibited the highest upregulated expression of pro-inflammatory factors(IL-10,IL-1β).The TCS+20μm group showed the highest increase in enzyme activity compared to the control group.PS-MPs and TCS,either alone or together,altered the composition of the intestinal microbial community.In addition,the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes,which may be associated with the development of intestinal inflammation and oxidative stress.This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.展开更多
Background Clarifying the enrichment and response processes of triclosan(TCS)in hydrophytes is crucial for assessing the ecological risk of TCS in aquatic environments.This study delves into the chronic toxic effects ...Background Clarifying the enrichment and response processes of triclosan(TCS)in hydrophytes is crucial for assessing the ecological risk of TCS in aquatic environments.This study delves into the chronic toxic effects of TCS in floating plant Eichhornia crassipes(Mart.)Solms and submerged plant Hydrilla verticillata(L.f.)Royle exposed to TCS sediments through hydroponic experiments.Results The absorption abilities of hydrophytes to TCS were species-dependent.The concentration of TCS in the roots of E.crassipes was significantly higher than that in its leaves,while the absorption capacities of the leaves of H.verticillata to TCS were stronger than that in its roots.Furthermore,the physiological indexes,including chlorophyll concentration,soluble protein concentration,and antioxidant enzyme activities,showed a significant decrease with the exposure concentration and time of TCS.Although the chlorophyll and soluble protein concentrations and the antioxidant enzyme activities in the leaves were initially increased at a low concentration of TCS(at 7 days of exposure),they decreased significantly over time.Compared to the leaves,the physiological indexes of the roots were more sensitive to the ecotoxicological effects of TCS.The inhibition effects of TCS on H.verticillata were signifi-cantly higher than those on E.crassipes,which may be associated with the absorbing abilities of TCS and the growth characteristics of the plants.Pearson’s correlation analysis found a significant negative correlation between the TCS concentrations and the antioxidant enzyme activities in the plants.Conclusions This study highlighted the differences in the uptake and enrichment process and toxic effects of TCS by different aquatic plants.Compared with E.crassipes,H.verticillata is more sensitive to TCS toxicity.展开更多
Triclosan(TCS)is a ubiquitous antimicrobial used in daily consumer products.Previous reports have shown that TCS could induce hepatotoxicity,endocrine disruption,disturbance on immune function and impaired thyroid fun...Triclosan(TCS)is a ubiquitous antimicrobial used in daily consumer products.Previous reports have shown that TCS could induce hepatotoxicity,endocrine disruption,disturbance on immune function and impaired thyroid function.Kidney is critical in the elimination of toxins,while the effects of TCS on kidney have not yet been well-characterized.The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice.Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day)for 13 weeks.TCS was dissolved in dimethyl sulfoxide(DMSO)and diluted by corn oil for exposure.Corn oil containing DMSO was used as vehicle control.Serum and kidney tissues were collected for study.Biomarkers associated with kidney function,oxidative stress,inflammation and fibrosis were assessed.Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine,urea nitrogen and uric acid,as well as increased oxidative stress,pro-inflammatory cytokines and fibroticmarkers in a dose dependent manner,whichweremore significantly in 100 mg/(kg•day)group.Mass spectrometry-based analysis of metabolites relatedwith lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day)TCS-exposed mouse kidney.These processes might lead to lipotoxicity and energy depletion,thus resulting in kidney fibrosis and functional decline.Taken together,the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney,whichmight contribute to renal function impairment.The present study further widens our insights into the adverse effects of TCS.展开更多
Triclosan(TCS)is commonly found in wastewater treatment plants,which often affects biological treatment processes.The responses of nitrification,antibiotic resistome and microbial community under different TCS concent...Triclosan(TCS)is commonly found in wastewater treatment plants,which often affects biological treatment processes.The responses of nitrification,antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study.The experiment was conducted in a sequencing batch reactor(SBR)for 240 days.Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered.And the abundances of nitrite oxidizing bacteria(NOB)under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge,which accounted for partial nitrification.When the addition of TCS was stopped,the abundance of NOB increased.The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system.Moreover,TCS increased the abundance of mexB,indicating the efflux pump might be the main TCS-resistance mechanism.As a response to TCS,bacteria could secrete more protein(PN)than polysaccharide.Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS.High-throughput sequencing found that the relative abundances of Paracoccus,Pseudoxanthomonas and Thauera increased,which could secrete extracellular polymeric substances(EPS).And Sphingopyxis might be the main TCS-degrading bacteria.Overall,TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.展开更多
Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer product...Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0908000 and 2022YFC2303600)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202002)+12 种基金the National Natural Science Foundation of China(82141001,82274182,82173914,82074098,81903588 and 82003814)the Science and Technology Foundation of Shenzhen(JCYJ20210324115800001)the Science and Technology Foundation of Shenzhen(Shenzhen Clinical Medical Research Center for Geriatric Diseases)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZXKT18003)the Fundamental Research Funds for the Central public welfare research institutes(ZZ14-YQ-050)the National Key R&D Program of China Key projects for international cooperation on science,technology and innovation(2020YFE0205100)the Shenzhen Governmental Sustainable Development Fund(KCXFZ20201221173612034)the Shenzhen Governmental Sustainable Development Fund(KCXFZ20201221173612034)the Shenzhen key Laboratory of Kidney Diseases(ZDSYS201504301616234)the Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(SZGSP001)the Shenzhen Key Laboratory of Kidney Diseases(ZDSYS201504301616234)the Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(SZGSP001)partially supported by a Grant from the Sanming Project of Medicine in Shenzhen(SZSM201612034).
文摘Background: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage.Methods: C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing(scRNA-seq) was then carried out on TCS-or mock-treated mice livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor(TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the cellular and molecular events after TCS exposure. To verify the TCS-induced liver fibrosis,the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson’s trichrome and Sirius red stainings. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies.Results: We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control groups profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells(HSCs)were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition,other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interactionmediated cellular communication in promoting liver fibrosis.Conclusions: TCS modulates the cellular activities and fates of several specific cell types(including hepatocytes, HSCs,endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis.Overall, we provide the first comprehensive single-cell atlas of mice livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.
文摘BACKGROUND Triclosan-coated vicryl plus suture(Ethicon, Inc.) was developed to reduce microbial colonisation during surgical procedures. However, its effect on wound healing and surgical site infections remain unclear after hip and knee arthroplasty surgery.AIM To determine the effect of triclosan-coated sutures(TCS) vs non-coated sutures on wound healing, following primary hip and knee arthroplasties.METHODS A single-centred, double-blind randomised controlled trial(RCT) was undertaken. We randomly allocated patients to receive either the triclosan-coated sutures(TCS vicryl plus) or non-coated sutures(NCS vicryl) during the closure of unilateral primary hip and knee arthroplasties. We utilised the ASEPSIS wound scoring system to evaluate wound healing for the first 6 weeks post-operatively.RESULTS One hundred and fifty patients undergoing primary total hip or knee arthroplasty over a one-year period were included. Eighty-one were randomised to the TCS group and 69 to the NCS group. Despite no statistically significant difference in the ASEPSIS scores among the study groups(P = 0.75), sensitivity analysis using the Mann Whitney test(P = 0.036) as well as assessment of the wound complications at 6 weeks follow up, demonstrated significantly higher wound complication rates in the TCS group(8 vs 1, P = 0.03).CONCLUSION No clear advantage was demonstrated for using the TCS. However, larger multicentred RCTs are required to validate their use in hip and knee arthroplasty surgery.
基金This work was funded by the innovative development funds of Jiangsu Province Hospital of Traditional Chinese Medicine(Y2018CX19).
文摘Periodontitis is a highly prevalent,chronic,non-specific,and immunologically devastating disease of periodontal tissues,caused by microbial infection.This study aims to examine the efficacy and protective mechanism of triclosan(TCS),a bisphenolic,non-cationic component of oral care products,against periodontal inflammation induced by lipopolysaccharide purified from Porphyromonas gingivalis(LPS-PG).TCS markedly downregulated interleukin-6(IL-6),IL-8,and IL-15 in human periodontal ligament fibroblasts(HPDLFs)treated with LPS-PG.By using a liquid chromatography-tandem mass spectrometry(LC-MS/MS)approach,318 differentially expressed proteins(161 upregulated and 157 downregulated)were identified in TCS-pretreated HPDLFs.TCS upregulated HSPA5 and HSP90B1 but downregulated HSPA2.Besides,TCS upregulated miR-548i in HPDLFs,which downregulated IL-15.These results indicate that TCS attenuates the activation of HPDLFs and downregulates the inflammatory cytokines through various mechanisms,thus highlighting its protective role in periodontal inflammation.
文摘This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.
文摘Aim: Oral malodor (halitosis) is a widespread condition caused by oral bacteria, particularly sulfur compound-producing species. This study assessed the effect of a triclosan/copolymer-containing dentifrice and a novel toothbrush with attached tongue cleaner on oral malodor and on the bacteria colonizing the dorsal surface of the tongue. Materials and Methods: 14 adult subjects with oral malodor defined as organoleptic scores ≥ 3 (scale 0 - 5) and mouth air sulfur levels ≥ 250 ppb participated in this study. Subjects were examined at baseline and after 28 days use of the triclosan dentifrice and toothbrush/tongue cleaner for: 1) organoleptic assessment;2) mouth air sulfur levels;3) tongue coating;and, 4) dorsal tongue surface microorganisms. Total bacterial numbers were assayed by microscopy. Dot-blot hybridization was used to assess a panel of 20 oral bacteria. Results: After 28 days, all subjects had significantly reduced organoleptic scores and mouth air sulfur levels compared to baseline (p 70% reduction in microbial numbers (p Enterococcus faecalis (p Peptostreptococcus micros (p Prevotella melaninogenica (p Porphyromonas gingivalis (p Solobacterium moorei
文摘Purpose: Bacterial biofilm develop on the surfaces of urinary catheter and proceed to cause full blown bacterial infections and sepsis. Urinary catheters, infection rates increase with the duration of catheterization at rates of per day with virtually all of those who undergo long-term catheterization becoming infected. Also antibiotics results in the adaptation and development of resistance leading to treatment failure, prolonged hospitalization, increased costs of care, and increased mortality. Methods: In the present study total 200 used urinary catheters were studied from the different hospitals of Amravati city in 2015-2016. Different bacterial uropathogens were isolated by conventional method and biofilm formation was studied by tissue culture plate (TCP). Antibiotic sensitivity was performed by disc diffusion method. Minimum inhibitory concentration (MIC) and Minimum biofilm eradicating concentration (MBEC) of triclosan was determined by TCP. Results: Out of total samples 93% are contaminated. Around 59% urinary catheters contain mixed consortia. Pseudomonas aeruginosa was found to be the strong biofilm forming and multidrug resistant organism. The most effective drug over seven bacteria isolates were chloramphenicol. Triclosan was used to test against the strong and moderate biofilm forming isolates the MIC of triclosan ranged between 1.5 and 1000 μg/ml and MBEC was between 800 and 3200 μg/ml Conclusions: From the study it was concluded that female are more prone to be infected with catheter associated infection. Pseudomonas aeruginosa was found to be deadly caused of infection, as it is highly resistant to antibiotics. Also triclosan showed effective result on the bacterial uropathogens.
基金supported by the National Natural Science Foundation of China (No.22166012)Guizhou Provincial Science and Technology Projects (No.[2020]1Z007)。
文摘Triclosan(TCS)has been manufactured as an antibacterial compound for half a century.Currently,it is widely used in various personal care products;however,its potential adverse effects raise a lot of attention.Here,we create a long-term oral administration mouse model and identify the corresponding hepatotoxicity of TCS.We discover that daily intragastric administration of 10 mg/kg TCS to mice for 12 weeks results in severe hepatic fibrosis.Further study displays that hepatic iron increased 18%,23%and 29%upon oral TCS treatment for4,8 and 12 weeks,respectively.Accompanied by hepatic iron variation,splenic and duodenal iron are increased,which indicates systemic iron disorder.Not only excessive iron accumulated in the liver,abnormal hepatic malondialdehyde,prostaglandin synthase 2 and glutathione peroxidase 4 are pointed to ferroptosis.Additional study uncovers that hepcidin expression increases 7%,10%,4%in serum and 2.4-,4.8-,and 2.3-fold on transcriptional levels upon TCS exposure for 4,8 and 12 weeks,individually.Taken together,the mice in the TCS-treated group show disordered systemic iron homeostasis via the upregulated hepatic hepcidin-ferroportin axis.Meanwhile,both hepatic iron overload(systemic level)and hepatocyte ferroptosis(cellular level)are accused of TCS-induced liver fibrosis.Ferriprox■,an iron scavenger,significantly ameliorates TCS-induced liver fibrosis.In summary,this study confirms the impact of TCS on liver fibrosis;a critical signal pathway is also displayed.The significance of the current study is to prompt us to reevaluate the“pros and cons”of TCS applications.
基金supported by the National Natural Science Foundation of China(Nos.31802025,41977340,and 42277260).
文摘Microplastics(MPs)are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms.The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis,its toxic effects,and the transmission of resistance genes were evaluated.The results showed that co-exposure to polystyrene(PS-MPs)adsorbed with triclosan(TCS)caused the accumulation of triclosan in the intestine with the following accumulation capacity:TCS+5μm PS group>TCS group>TCS+20μm PS group>TCS+0.1μm PS group.All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes.The TCS+20μm PS group exhibited the highest upregulated expression of pro-inflammatory factors(IL-10,IL-1β).The TCS+20μm group showed the highest increase in enzyme activity compared to the control group.PS-MPs and TCS,either alone or together,altered the composition of the intestinal microbial community.In addition,the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes,which may be associated with the development of intestinal inflammation and oxidative stress.This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.
基金supported by the National Natural Science Foundation of China(31971515)the Fund for National Key Research and Development Plan of China(2019YFC1804100)+1 种基金the Fund for Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28010503)the Major Project of Shenyang Institute of Applied Ecology,Chinese Academy of Sciences(IAEMP202201).
文摘Background Clarifying the enrichment and response processes of triclosan(TCS)in hydrophytes is crucial for assessing the ecological risk of TCS in aquatic environments.This study delves into the chronic toxic effects of TCS in floating plant Eichhornia crassipes(Mart.)Solms and submerged plant Hydrilla verticillata(L.f.)Royle exposed to TCS sediments through hydroponic experiments.Results The absorption abilities of hydrophytes to TCS were species-dependent.The concentration of TCS in the roots of E.crassipes was significantly higher than that in its leaves,while the absorption capacities of the leaves of H.verticillata to TCS were stronger than that in its roots.Furthermore,the physiological indexes,including chlorophyll concentration,soluble protein concentration,and antioxidant enzyme activities,showed a significant decrease with the exposure concentration and time of TCS.Although the chlorophyll and soluble protein concentrations and the antioxidant enzyme activities in the leaves were initially increased at a low concentration of TCS(at 7 days of exposure),they decreased significantly over time.Compared to the leaves,the physiological indexes of the roots were more sensitive to the ecotoxicological effects of TCS.The inhibition effects of TCS on H.verticillata were signifi-cantly higher than those on E.crassipes,which may be associated with the absorbing abilities of TCS and the growth characteristics of the plants.Pearson’s correlation analysis found a significant negative correlation between the TCS concentrations and the antioxidant enzyme activities in the plants.Conclusions This study highlighted the differences in the uptake and enrichment process and toxic effects of TCS by different aquatic plants.Compared with E.crassipes,H.verticillata is more sensitive to TCS toxicity.
基金supported by the National Natural Science Foundation of China (No. 21806135)the General Research Fund (No. 12301518) from Research Grants Council of Hong Kong
文摘Triclosan(TCS)is a ubiquitous antimicrobial used in daily consumer products.Previous reports have shown that TCS could induce hepatotoxicity,endocrine disruption,disturbance on immune function and impaired thyroid function.Kidney is critical in the elimination of toxins,while the effects of TCS on kidney have not yet been well-characterized.The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice.Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day)for 13 weeks.TCS was dissolved in dimethyl sulfoxide(DMSO)and diluted by corn oil for exposure.Corn oil containing DMSO was used as vehicle control.Serum and kidney tissues were collected for study.Biomarkers associated with kidney function,oxidative stress,inflammation and fibrosis were assessed.Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine,urea nitrogen and uric acid,as well as increased oxidative stress,pro-inflammatory cytokines and fibroticmarkers in a dose dependent manner,whichweremore significantly in 100 mg/(kg•day)group.Mass spectrometry-based analysis of metabolites relatedwith lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day)TCS-exposed mouse kidney.These processes might lead to lipotoxicity and energy depletion,thus resulting in kidney fibrosis and functional decline.Taken together,the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney,whichmight contribute to renal function impairment.The present study further widens our insights into the adverse effects of TCS.
基金supported by the National Natural Science Foundation of China(No.51578015)the Beijing Natural Science Foundation(No.8202006)+1 种基金the National Science and Technology Major Project(No.2017ZX07103-003)the Beijing Municipal Science and Technology Project(No.Z181100005518002)。
文摘Triclosan(TCS)is commonly found in wastewater treatment plants,which often affects biological treatment processes.The responses of nitrification,antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study.The experiment was conducted in a sequencing batch reactor(SBR)for 240 days.Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered.And the abundances of nitrite oxidizing bacteria(NOB)under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge,which accounted for partial nitrification.When the addition of TCS was stopped,the abundance of NOB increased.The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system.Moreover,TCS increased the abundance of mexB,indicating the efflux pump might be the main TCS-resistance mechanism.As a response to TCS,bacteria could secrete more protein(PN)than polysaccharide.Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS.High-throughput sequencing found that the relative abundances of Paracoccus,Pseudoxanthomonas and Thauera increased,which could secrete extracellular polymeric substances(EPS).And Sphingopyxis might be the main TCS-degrading bacteria.Overall,TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.
文摘Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.
文摘三氯生(triclosan,TCS)和三氯卡班(triclocarban,TCC)是2种高效广谱抗菌剂,均具有胚胎毒性、内分泌干扰性和生殖毒性,并可能引发癌症、DNA损伤和不良妊娠结局等,是目前一类广泛关注的新污染物。美国食品与药品监督管理局(US FDA)于2016年已禁止含有TCS和TCC等抑菌剂的非处方抗菌洗浴产品进入市场,而目前在我国其为化妆品准用防腐剂,允许限量使用,且皂类产品不在限制范围内。TCS和TCC作为新兴的外源性化学污染物能够随生活污水的排放进入自然环境,对我国本土水生生物、生态安全和人身健康构成了潜在威胁。为探究TCS和TCC对我国本土鱼种稀有鮈鲫(Gobiocypris rarus)长期暴露及4个不同发育阶段(胚胎期、卵黄囊吸收阶段、仔鱼及幼鱼阶段)的毒性效应,本研究将稀有鮈鲫的受精卵暴露于TCS和TCC中,直至孵化后60 d(60 days post hatch,60 dph),试验过程中监测胚胎期的孵化率,卵黄囊吸收阶段、仔鱼及幼鱼阶段的成活率,长期暴露过程中的生长情况、性分化及内分泌干扰效应等多个指标。研究结果显示,在胚胎期,6.25~100μg·L^(-1)的TCS和0.938~15μg·L^(-1)的TCC对稀有鮈鲫的胚胎孵化率没有显著的毒性效应。在仔鱼阶段,6.25~100μg·L^(-1)的TCS和0.938~15μg·L^(-1)的TCC暴露组30 dph成活率的最高无可观察效应浓度分别为100μg·L^(-1)和0.938μg·L^(-1),根据我国国家标准,TCC对水生环境的危害可判定为长期慢性类别1,而TCS由于试验中的最高浓度未达到1 mg·L^(-1),无法作出明确的判断,但能判断其对水生环境的危害为非长期慢性类别1。在幼鱼阶段,6.25~100μg·L^(-1)的TCS和0.938~15μg·L^(-1)的TCC均对雌性及雄性稀有鮈鲫体内卵黄蛋白原具有一定的诱导作用,但在性分化上没有显著影响。在胚后发育过程中,通过长期暴露,6.25~100μg·L^(-1)的TCS对稀有鮈鲫体质量有显著毒性效应,随TCS浓度的升高,稀有鮈鲫体质量逐渐降低,TCS对稀有鮈鲫体质量具有抑制作用;0.938~15μg·L^(-1)的TCC对稀有鮈鲫体质量及体长等生长均无显著影响。此外,研究发现稀有鮈鲫在不同发育阶段的毒性效应存在差异,稀有鮈鲫胚胎期的耐受力明显高于胚后发育阶段,卵黄囊吸收阶段及仔鱼阶段的耐受力低于幼鱼阶段。可见,当更多的生命阶段被包括在一个测试中,能够通过较少的试验动物,获得较多的毒性终点,且测试中不同生命阶段的毒性效应来自同一批试验动物,使不同生命阶段的试验结果更具可比性。