Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. The ratio of the second-harmonic signal to the intensity of laser beam incident to the multi-pass ce...Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. The ratio of the second-harmonic signal to the intensity of laser beam incident to the multi-pass cell is proved to be proportional to the product of the path length and the gas concentration under any condition. A new calibration method based on this relation in TDLAS system for the measurement of trace gas concentration is proposed for the first time. The detection limit and the sensitivity of the system are below 110 and 31ppbv (parts-per-billion in volume), respectively.展开更多
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie...As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.展开更多
Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate...Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate the effects of high-frequency(HF, 60 MHz) power, low-frequency(LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components(0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction(5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases,and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.展开更多
A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conj...A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.展开更多
A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this p...A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable ECDL relevant parameters: the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm-1552.426 nm, a stable output optical power in the range of 40 μW-50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz-150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.展开更多
In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in ...In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.展开更多
We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal p...We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.展开更多
Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a press...Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.展开更多
Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. In the measurement of these trace gases, harmonic detection combined with a multi-pass white cell co...Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. In the measurement of these trace gases, harmonic detection combined with a multi-pass white cell could remarkably enhance the detection sensitivity. In this paper, a portable TDLAS system built specifically for long time monitoring methane in the atmosphere is introduced. The detection limit is below 100 ppb that is enough for the monitoring of ambient methane, and the long time monitoring results obtained in Beijing are given, which is well coincident with that of the Fourier transform infrared (FTIR) spectroscopy.展开更多
We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a...We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a candidate for implementing the wavelength-division space switch fabric for an optical packet/burst switching.展开更多
A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning...A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.展开更多
We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic sign...We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.展开更多
Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into a...Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.展开更多
A real time α-β-γ filtering technique is applied to the monitoring of atmosphere CH4 based on a tunable diode laser spectrum system operating at 1.654μm. This technique is developed for improving the sensitivity a...A real time α-β-γ filtering technique is applied to the monitoring of atmosphere CH4 based on a tunable diode laser spectrum system operating at 1.654μm. This technique is developed for improving the sensitivity and precision of CH4 concentration measurement with slow concentration change. The effectiveness of this technique is evaluated by performing CH4 concentration measurement and using it to monitor the varying methane level in the atmosphere. It was proved that signal noise ratio enhancement factor is 4.25. The comparison between this filter and moving average is also included in this article. It indicates the advantage of the α-β-γ real time filter.展开更多
Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution.This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution,to...Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution.This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution,to provide a real-time and reliable measurement of velocity distribution in detonation exhaust flow with obvious nonuniformity.Relations are established between overlapped spectrums along probing beams and Gauss velocity distribution phantom according to the frequency shifts and tiny variations in components of light-of-sight absorbance profiles at low frequencies analyzed by the fast Fourier transform.With simulated optical measurement using H2O feature at 7185.6 cm-1 carried out on a phantom generated using a simulation of two-phase detonation by a two-fluid model,this method demonstrates a satisfying performance on recovery of velocity distribution profiles in supersonic flow even with a noise equivalent absorbance up to 2×10^(-3).This method is applied to the analysis of rapidly decreasing velocity during a complete working cycle in the external flow field of an air-gasoline detonation tube operating at 25 Hz,and results show the velocity in the core flow field would be much larger than the arithmetic average from traditional tunable diode laser doppler velocimetry.This proposed velocity distribution sensor would reconstruct nonuniform velocity distribution of high-speed flow in low cost and simple operations,which broadens the possibility for applications in research on the formation and propagation of external flow filed of detonation tube.展开更多
Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly use...Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly used summation method.A detailed comparison of the three-step method and the summation method,for the wavelength-scanned WMS gas-sensing,was performed with different laser parameters(modulation indexes and scan indexes) and gas properties(pressures and concentrations).Simulation results show that the accuracy of the predicted gas parameters is strongly limited by the RWR characterization with large modulation index and high gas pressure conditions.Both fitting residuals of RWR and errors of predicted gas parameters from the recently proposed three-step method are nearly 2 orders of magnitude smaller than those from the summation method.In addition,the three-step method is further improved by introducing a coupling term for the 2^(nd) harmonic amplitude.Experiments with CO_(2) absorption transition at 6976.2026 cm^(-1) were conducted and validated the simulation analysis.The modified-three-step method presents an improved accuracy in RWR description with at least 5% smaller fitting residual for all conditions compared with the three-step method,although the deviation of the deduced CO_(2) concentrations between these two methods does not exceed 0.2%.展开更多
Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water va...Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water vapor from 1300 nm to 1350 nm,the temperature probability distribution of nonuniform temperature distribution,for which a parabolic temperature profile is selected as an example in this paper,was retrieved by making the use of regularization methods.To examine the effectiveness of regularization methods,truncated singular value decomposition(TSVD),Tikhonov regularization and a revised Tikhonov regularization method were implemented to retrieve the temperature probability distribution.The results derived by using the three regularization methods were compared with that by using constrained linear least-square fitting.The results show that regularization methods not only generate closer temperature probability distributions to the original,but also are less sensitive to measurement noise.Particularly,the revised Tikhonov regularization method generate solutions in better agreement with the original ones than those obtained by using TSVD and Tikhonov regularization methods.The results obtained in this work can enrich the temperature distribution information,which is expected to play a more important role in combustion diagnosis.展开更多
A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirr...A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.展开更多
We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavel...We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavelength tuning range is 2 nm by adjusting the FP cavity injection current,covering the methane absorption line at 1653.72 nm.The lasing wavelength can also be tuned by adjusting the square microcavity injection current or temperature,respectively.Methane gas detection is successfully demonstrated utilizing this laser.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10274080) and the National High Technology Research and Development Program of China (Grant No 2003AA641010).
文摘Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. The ratio of the second-harmonic signal to the intensity of laser beam incident to the multi-pass cell is proved to be proportional to the product of the path length and the gas concentration under any condition. A new calibration method based on this relation in TDLAS system for the measurement of trace gas concentration is proposed for the first time. The detection limit and the sensitivity of the system are below 110 and 31ppbv (parts-per-billion in volume), respectively.
文摘As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11335004,11722541,11675039,and 11747153)the Important National Science and Technology Specific Project,China(Grant No.2011ZX02403-001)
文摘Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate the effects of high-frequency(HF, 60 MHz) power, low-frequency(LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components(0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction(5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases,and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61302026,61275067 and 61575034the Jiangsu Natural Science Foundation under Grant No BK2012432
文摘A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.
基金the Key Laboratory of Functional Crystals and Laser Technology,Chinese Academy of Sciences(Grant No.JTJG201109)the Guangdong Province&Chinese Academy of Sciences Comprehensive Strategic Cooperation Project(Grant No.2010A090100014)the 2009 Technology Research and Development Fund of Shenzhen,China(Grant No.O702011001)
文摘A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable ECDL relevant parameters: the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm-1552.426 nm, a stable output optical power in the range of 40 μW-50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz-150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.
文摘In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60938002)the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ06016501)the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No. 11JCYBJC04900)
文摘We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0202400 and 2017YFB0202401)
文摘Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.
基金This work was supported by the National High Tech-nology Research and Development Program of China (No. 2005AA641010)the National Natural Science Foundation of China (No. 50534050).
文摘Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detection. In the measurement of these trace gases, harmonic detection combined with a multi-pass white cell could remarkably enhance the detection sensitivity. In this paper, a portable TDLAS system built specifically for long time monitoring methane in the atmosphere is introduced. The detection limit is below 100 ppb that is enough for the monitoring of ambient methane, and the long time monitoring results obtained in Beijing are given, which is well coincident with that of the Fourier transform infrared (FTIR) spectroscopy.
文摘We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a candidate for implementing the wavelength-division space switch fabric for an optical packet/burst switching.
文摘A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51176085 and 51206086)
文摘We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences(Grant No.YZ201315)the National Natural Science Foundation of China(Grant Nos.11204320,41405034,and 11204319)
文摘Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274080) and the National High Technology Research and Development Program of China (Grant No 2003AA641010).
文摘A real time α-β-γ filtering technique is applied to the monitoring of atmosphere CH4 based on a tunable diode laser spectrum system operating at 1.654μm. This technique is developed for improving the sensitivity and precision of CH4 concentration measurement with slow concentration change. The effectiveness of this technique is evaluated by performing CH4 concentration measurement and using it to monitor the varying methane level in the atmosphere. It was proved that signal noise ratio enhancement factor is 4.25. The comparison between this filter and moving average is also included in this article. It indicates the advantage of the α-β-γ real time filter.
基金the China Scholarship Council(Grant No.201906845059)the Young Scientists Found of the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190439)the Fundamental Research Funds of National Key Laboratory of Transient Physics(Grant No.6142604200202)。
文摘Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution.This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution,to provide a real-time and reliable measurement of velocity distribution in detonation exhaust flow with obvious nonuniformity.Relations are established between overlapped spectrums along probing beams and Gauss velocity distribution phantom according to the frequency shifts and tiny variations in components of light-of-sight absorbance profiles at low frequencies analyzed by the fast Fourier transform.With simulated optical measurement using H2O feature at 7185.6 cm-1 carried out on a phantom generated using a simulation of two-phase detonation by a two-fluid model,this method demonstrates a satisfying performance on recovery of velocity distribution profiles in supersonic flow even with a noise equivalent absorbance up to 2×10^(-3).This method is applied to the analysis of rapidly decreasing velocity during a complete working cycle in the external flow field of an air-gasoline detonation tube operating at 25 Hz,and results show the velocity in the core flow field would be much larger than the arithmetic average from traditional tunable diode laser doppler velocimetry.This proposed velocity distribution sensor would reconstruct nonuniform velocity distribution of high-speed flow in low cost and simple operations,which broadens the possibility for applications in research on the formation and propagation of external flow filed of detonation tube.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51906120 and 11972213)China Postdoctoral Science Foundation(Grant Nos.2018M640125 and 2019T120088)the National Basic Research Program of China(Grant No.2016YFC0201104)。
文摘Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly used summation method.A detailed comparison of the three-step method and the summation method,for the wavelength-scanned WMS gas-sensing,was performed with different laser parameters(modulation indexes and scan indexes) and gas properties(pressures and concentrations).Simulation results show that the accuracy of the predicted gas parameters is strongly limited by the RWR characterization with large modulation index and high gas pressure conditions.Both fitting residuals of RWR and errors of predicted gas parameters from the recently proposed three-step method are nearly 2 orders of magnitude smaller than those from the summation method.In addition,the three-step method is further improved by introducing a coupling term for the 2^(nd) harmonic amplitude.Experiments with CO_(2) absorption transition at 6976.2026 cm^(-1) were conducted and validated the simulation analysis.The modified-three-step method presents an improved accuracy in RWR description with at least 5% smaller fitting residual for all conditions compared with the three-step method,although the deviation of the deduced CO_(2) concentrations between these two methods does not exceed 0.2%.
基金support by the National Science Foundation for Distinguished Youth Scholars of China(Grant No.61225006)National Natural Science Foundation of China(Grant No.60972087)Natural Science Foundation of Beijing,China(Grant No.3112018).
文摘Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water vapor from 1300 nm to 1350 nm,the temperature probability distribution of nonuniform temperature distribution,for which a parabolic temperature profile is selected as an example in this paper,was retrieved by making the use of regularization methods.To examine the effectiveness of regularization methods,truncated singular value decomposition(TSVD),Tikhonov regularization and a revised Tikhonov regularization method were implemented to retrieve the temperature probability distribution.The results derived by using the three regularization methods were compared with that by using constrained linear least-square fitting.The results show that regularization methods not only generate closer temperature probability distributions to the original,but also are less sensitive to measurement noise.Particularly,the revised Tikhonov regularization method generate solutions in better agreement with the original ones than those obtained by using TSVD and Tikhonov regularization methods.The results obtained in this work can enrich the temperature distribution information,which is expected to play a more important role in combustion diagnosis.
基金Financial support from National High Technology Research and Development Programof China(Grant No.:2007A A06Z1122007AA03Z446)
文摘A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.
基金supported by the National Key R&D Program of China(No.2017YFB0405301)。
文摘We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavelength tuning range is 2 nm by adjusting the FP cavity injection current,covering the methane absorption line at 1653.72 nm.The lasing wavelength can also be tuned by adjusting the square microcavity injection current or temperature,respectively.Methane gas detection is successfully demonstrated utilizing this laser.