期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
An analytic model for gate-all-around silicon nanowire tunneling field effect transistors
1
作者 刘颖 何进 +6 位作者 陈文新 杜彩霞 叶韵 赵巍 吴文 邓婉玲 王文平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期369-374,共6页
An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band ... An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results. 展开更多
关键词 gate-all-round nanowire tunneling field effect transistor band to band tunneling analytic model
原文传递
Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures
2
作者 冯申艳 张巧璇 +2 位作者 杨洁 雷鸣 屈贺如歌 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期421-427,共7页
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low... Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures. 展开更多
关键词 tunneling field effect transistors negative differential resistance effect on/off current ratio subthreshold swing
原文传递
A non-quasi-static model for nanowire gate-all-around tunneling field-effect transistors
3
作者 芦宾 马鑫 +3 位作者 王大为 柴国强 董林鹏 苗渊浩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期660-665,共6页
Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transi... Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure. 展开更多
关键词 tunneling field effect transistor relaxation time approximation non-quasi-static non-quasi-static
原文传递
Analysis of the subthreshold characteristics of vertical tunneling field effect transistors
4
作者 韩忠方 茹国平 阮刚 《Journal of Semiconductors》 EI CAS CSCD 2013年第1期28-34,共7页
Subthreshold characteristics of vertical tunneling field effect transistors(VTFETs) with an nC-pocket in the pC-source are studied by simulating the transfer characteristics with a commercial device simulator.Three ... Subthreshold characteristics of vertical tunneling field effect transistors(VTFETs) with an nC-pocket in the pC-source are studied by simulating the transfer characteristics with a commercial device simulator.Three types of subthreshold characteristics are demonstrated for the device with different pocket thicknesses and doping concentrations.Band diagram analysis shows that such a VTFET can be treated as a gate-controlled tunnel diode connected in series with a conventional n-channel metal-oxide-semiconductor FET.This VTFET can work either as a TFET or an n-MOSFET in the subthreshold region,depending on the turn-on sequence of these two components.To our knowledge,this is the first time such a device model has been used to explain the subthreshold characteristics of this kind of VTFET and the simulation results demonstrate that such a device model is convictive and valid.Our results indicate that the design of the nC pocket is crucial for such a VTFET in order to achieve ultra-steep turn-on characteristics. 展开更多
关键词 tunneling field effect transistor metal-oxide-semiconductor field effect transistor subthreshold swing
原文传递
Si–Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications
5
作者 Lucky Agarwal Varun Mishra +2 位作者 Ravi Prakash Dwivedi Vishal Goyal Shweta Tripathi 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期644-651,共8页
A dielectric modulation strategy for gate oxide material that enhances the sensing performance of biosensors in junction-less vertical tunnel field effect transistors(TFETs)is reported.The junction-less technique,in w... A dielectric modulation strategy for gate oxide material that enhances the sensing performance of biosensors in junction-less vertical tunnel field effect transistors(TFETs)is reported.The junction-less technique,in which metals with specific work functions are deposited on the source region to modulate the channel conductivity,is used to provide the necessary doping for the proper functioning of the device.TCAD simulation studies of the proposed structure and junction structure have been compared,and showed an enhanced rectification of 10^(4) times.The proposed structure is designed to have a nanocavity of length 10 nm on the left-and right-hand sides of the fixed gate dielectric,which improves the biosensor capture area,and hence the sensitivity.By considering neutral and charged biomolecules with different dielectric constants,TCAD simulation studies were compared for their sensitivities.The off-state current IOFFcan be used as a suitable sensing parameter because it has been observed that the proposed sensor exhibits a significant variation in drain current.Additionally,it has been investigated how positively and negatively charged biomolecules affect the drain current and threshold voltage.To explore the device performance when the nanogaps are fully filled,half filled and unevenly filled,extensive TCAD simulations have been run.The proposed TFET structure is further benchmarked to other structures to show its better sensing capabilities. 展开更多
关键词 biomolecules high-k dielectric junction-less vertical tunnel field effect transistor(TFET)
原文传递
Design and Analysis of Graphene Based Tunnel Field Effect Transistor with Various Ambipolar Reducing Techniques
6
作者 Puneet Kumar Mishra Amrita Rai +5 位作者 Nitin Sharma Kanika Sharma Nitin Mittal Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din 《Computers, Materials & Continua》 SCIE EI 2023年第7期1309-1320,共12页
The fundamental advantages of carbon-based graphene material,such as its high tunnelling probability,symmetric band structure(linear dependence of the energy band on the wave direction),low effective mass,and characte... The fundamental advantages of carbon-based graphene material,such as its high tunnelling probability,symmetric band structure(linear dependence of the energy band on the wave direction),low effective mass,and characteristics of its 2D atomic layers,are the main focus of this research work.The impact of channel thickness,gate under-lap,asymmetric source/drain doping method,workfunction of gate contact,and High-K material on Graphene-based Tunnel Field Effect Transistor(TFET)is analyzed with 20 nm technology.Physical modelling and electrical characteristic performance have been simulated using the Atlas device simulator of SILVACO TCAD with user-defined material syntax for the newly included graphene material in comparison to silicon carbide(SiC).The simulation results in significant suppression of ambipolar current to voltage characteristics of TFET and modelled device exhibits a significant improvement in subthreshold swing(0.0159 V/decade),the ratio of Ion/Ioff(1000),and threshold voltage(-0.2 V with highly doped p-type source and 0.2 V with highly doped n-type drain)with power supply of 0.5 V,which make it useful for low power digital applications. 展开更多
关键词 GRAPHENE tunnel field effect transistor(TFET) band to band tunnelling subthreshold swing
下载PDF
Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrodinger’s equation
7
作者 Endi Suhendi Lilik Hasanah +3 位作者 Dadi Rusdiana Fatimah A. Noor Neny Kurniasih Khairurrijal 《Journal of Semiconductors》 EI CAS CSCD 2019年第6期43-47,共5页
The tunneling current in a graphene nanoribbon tunnel field effect transistor(GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like... The tunneling current in a graphene nanoribbon tunnel field effect transistor(GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like equation and Schrodinger’s equation. To calculate the electron transmittance, a numerical approach-namely the transfer matrix method(TMM)-was employed and the Launder formula was used to compute the tunneling current. The results suggest that the tunneling currents that were calculated using both equations have similar characteristics for the same parameters, even though they have different values. The tunneling currents that were calculated by applying the Dirac-like equation were lower than those calculated using Schrodinger’s equation. 展开更多
关键词 graphene nanoribbon tunnel field effect transistor tunneling current Schrodinger equation Dirac-like equation
下载PDF
Double-gate-all-around tunnel field-effect transistor
8
作者 张文豪 李尊朝 +1 位作者 关云鹤 张也非 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期449-453,共5页
In this work, a double-gate-all-around tunneling field-effect transistor is proposed. The performance of the novel device is studied by numerical simulation. The results show that with a thinner body and an additional... In this work, a double-gate-all-around tunneling field-effect transistor is proposed. The performance of the novel device is studied by numerical simulation. The results show that with a thinner body and an additional core gate, the novel device achieves a steeper subthreshold slope, less susceptibility to the short channel effect, higher on-state current, and larger on/off current ratio than the traditional gate-all-around tunneling field-effect transistor. The excellent performance makes the proposed structure more attractive to further dimension scaling. 展开更多
关键词 gate-all-around(GAA) tunnel field effect transistor(TFET) drain induced barrier thinning(DIBT)
原文传递
Design and investigation of dopingless double-gate line tunneling transistor: Analog performance, linearity, and harmonic distortion analysis
9
作者 Hui-Fang Xu Xin-Feng Han Wen Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期556-565,共10页
The tunnel field-effect transistor (TFET) is proposed by using the advantages of dopingless and line-tunneling technology. The line tunneling is created due to the fact that the gate electric field is aligned with the... The tunnel field-effect transistor (TFET) is proposed by using the advantages of dopingless and line-tunneling technology. The line tunneling is created due to the fact that the gate electric field is aligned with the tunneling direction, which dramatically enhances tunneling area and tunneling current. Moreover, the effects of the structure parameters such as the length between top gate and source electrode, the length between top gate and drain electrode, the distance between bottom gate and drain electrode, and the metal position on the on-state current, electric field and energy band are investigated and optimized. In addition, analog/radio-frequency performance and linearity characteristics are studied. All results demonstrate that the proposed device not only enhances the on/of current ratio and reduces the subthreshold swing, but also offers eight times improvement in cut-off frequency and gain band product as compared with the conventional point tunneling dopingless TFET, at the same time;it shows better linearity and small distortions. This proposed device greatly enhances the potential of applications in dopingless TFET. 展开更多
关键词 dopingless tunnel field effect transistor line tunneling lincarity parameters
原文传递
Molecule-based vertical transistor via intermolecular charge transport throughπ-πstacking
10
作者 Cheng Liu Cheng Fu +9 位作者 Lingyu Tang Jianghua Wu Zhangyan Mu Yamei Sun Yanghang Pan Bailin Tian Kai Bao Jing Ma Qiyuan He Mengning Ding 《Nano Research》 SCIE EI CSCD 2024年第5期4573-4581,共9页
Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchan... Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices. 展开更多
关键词 π-πstacking electrochemical intercalation organic semiconductor electrical transport tunneling field effect transistor
原文传递
Ambipolar performance improvement of the C-shaped pocket TFET with dual metal gate and gate–drain underlap
11
作者 赵梓淼 陈子馨 +9 位作者 刘伟景 汤乃云 刘江南 刘先婷 李宣霖 潘信甫 唐敏 李清华 白伟 唐晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期700-707,共8页
Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap leng... Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices. 展开更多
关键词 tunnel field effect transistor ambipolar current dual metal gate gate–drain underlap
原文传递
Analog performance of double gate junctionless tunnel field effect transistor 被引量:2
12
作者 M.W.Akram Bahniman Ghosh 《Journal of Semiconductors》 EI CAS CSCD 2014年第7期37-41,共5页
For the first time, we investigate the analog performance of n-type double gate junctionless tunnel field effect transistor (DG-JLTFET) and the results are compared with the conventional n-type double gate tunnel fi... For the first time, we investigate the analog performance of n-type double gate junctionless tunnel field effect transistor (DG-JLTFET) and the results are compared with the conventional n-type double gate tunnel field effect transistor (DG-TFET) counterpart. Using extensive device simulations, the two devices are compared with the following analog performance parameters, namely transconductance, output conductance, output resistance, intrinsic gain, total gate capacitance and unity gain frequency. From the device simulation results, DG-JLTFET is found to have significantly better analog performance as compared to DG-TFET. 展开更多
关键词 junctionless field effect transistor tunnel field effect transistor subthreshold slope
原文传递
High performance 20 nm GaSb/InAs junctionless tunnel field effect transistor for low power supply 被引量:1
13
作者 Pranav Kumar Asthana 《Journal of Semiconductors》 EI CAS CSCD 2015年第2期56-61,共6页
We present a GaSb/In As junctionless tunnel FET and investigate its static device characteristics. The proposed structure presents tremendous performance at a very low supply voltage of 0.4 V. The key idea is to the p... We present a GaSb/In As junctionless tunnel FET and investigate its static device characteristics. The proposed structure presents tremendous performance at a very low supply voltage of 0.4 V. The key idea is to the present device architecture, which can be exploited as a digital switching device for sub 20 nm technology.Numerical simulations resulted in an IOFF of 8×10^-17A/ m, ION of 9 A/ m, ION/IOFF of 1×10^11,subthreshold slope of 9.33 m V/dec and DIBL of 87 m V/V for GaSb/InAs JLTFET at a temperature of 300 K,gate length of 20 nm, HfO2 gate dielectric thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.4 V. 展开更多
关键词 band tunneling (BTBT) tunnel field effect transistor (TFET) junctionless tunnel field effect transistor(JLTFET) ION/IOFF ratio low power digital switching
原文传递
A 2-D semi-analytical model of double-gate tunnel field-effect transistor 被引量:1
14
作者 许会芳 代月花 +1 位作者 李宁 徐建斌 《Journal of Semiconductors》 EI CAS CSCD 2015年第5期24-30,共7页
A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poi... A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poisson equation is solved by using a semi-analytical method combined with an eigenfunction expansion method. The expression of the surface potential is obtained, which is a special function for the infinite series expressions. The influence of the mobile charges on the potential profile is taken into account in the proposed model. On the basis of the potential profile, the shortest tunneling length and the average electrical field can be derived, and the drain current is then constructed by using Kane's model. In particular, the changes of the tunneling parameters Ak and Bk influenced by the drain-source voltage are also incorporated in the predicted model. The proposed model shows a good agreement with TCAD simulation results under different drain-source voltages, silicon film thicknesses, gate dielectric layer thicknesses, and gate dielectric layer constants. Therefore, it is useful to optimize the DG TFET and this provides a physical insight for circuit level design. 展开更多
关键词 semi-analytical method eigenfunction expansion method double-gate tunnel field effect transistor (TFET) surface potential drain current
原文传递
A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel for ultra low power applications 被引量:1
15
作者 Pranav Kumar Asthana Yogesh Goswami Bahniman Ghosh 《Journal of Semiconductors》 EI CAS CSCD 2016年第5期30-34,共5页
We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage)... We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage) are improved by junctionless TFETs through blending advantages of Junctionless FETs (with high on current). We further improved the characteristics, simultaneously simplifying the structure at a very low power rating using an InAs channel. We found that the proposed device structure has reduced short channel effects and parasitics and provides high speed operation even at a very low supply voltage with low leakage. Simulations resulted in Iovv of - 9 × 10-16A/um, IoN of ,-20uA/um, ION/IoFF of--2× 1010, threshold voltage of 0.057 V, subthreshold slope of 7 mV/dec and DIBL of 86 mV/V for PolyGate/HfO2/InAs TFET at a temperature of 300 K, gate length of 20 nm, oxide thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.2 V. 展开更多
关键词 band-to-band tunneling (BTBT) tunnel field effect transistor (TFET) junctionless tunnel field effecttransistor (JLTFET) ION/IOFF ratio low power
原文传递
Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor
16
作者 Shibir Basak Pranav Kumar Asthana +1 位作者 Yogesh Goswami Bahniman Ghosh 《Journal of Semiconductors》 EI CAS CSCD 2014年第11期32-39,共8页
We propose a dynamic threshold voltage j unctionless tunnel FET (DT-JLTFET) in wnlcn me mresnolu voltage can be dynamically adjusted, resulting in higher ON-current. Through 2D numerical simulations, it is presented... We propose a dynamic threshold voltage j unctionless tunnel FET (DT-JLTFET) in wnlcn me mresnolu voltage can be dynamically adjusted, resulting in higher ON-current. Through 2D numerical simulations, it is presented that the threshold voltage in the DT-JLTFET can be adjusted by applying a voltage to the adjust gate. The impact of the threshold voltage shift on the overall performance of the device is also studied. A comparison is made between the dynamic threshold voltage characteristics of a silicon JLTFET and a Sio.7Geo.3 source JLTFET. 展开更多
关键词 SIGE tunnel field effect transistor ON-current
原文传递
P-type double gate junctionless tunnel field effect transistor
17
作者 M.W.Akram Bahniman Ghosh +1 位作者 Punyasloka Bal Partha Mondal 《Journal of Semiconductors》 EI CAS CSCD 2014年第1期27-33,共7页
We have investigated the 20 nm p-type double gate junctionless tunnel field effect transistor (P-DGJLTFET) and the impact of variation of different device parameters on the performance parameters of the P-DGJLTFET i... We have investigated the 20 nm p-type double gate junctionless tunnel field effect transistor (P-DGJLTFET) and the impact of variation of different device parameters on the performance parameters of the P-DGJLTFET is discussed. We achieved excellent results of different performance parameters by taking the optimized device parameters of the P-DGJLTFET. Together with a high-k dielectric material (TiO2) of 20 nm gate length, the simulation results of the P-DGJLTFET show excellent characteristics with a high IoN of ~ 0.3 mA/μm, a low/OFF of ~ 30 fA/μm, a high ION/IOFF ratio of ~ 1×10^10, a subthreshold slope (SS) point of ~ 23 mV/decade, and an average SS of ~ 49 mV/decade at a supply voltage of -1 V and at room temperature, which indicates that PDGJLTFET is a promising candidate for sub-22 nm technology nodes in the implementation of integrated circuits. 展开更多
关键词 junctionless field effect transistor tunnel field effect transistor subthreshold slope
原文传递
DC and analog/RF performance of C-shaped pocket TFET(CSP-TFET)with fully overlapping gate
18
作者 Zi-Xin Chen Wei-Jing Liu +6 位作者 Jiang-Nan Liu Qiu-Hui Wang Xu-Guo Zhang Jie Xu Qing-Hua Li Wei Bai Xiao-Dong Tang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期711-719,共9页
A C-shaped pocket tunnel field effect transistor(CSP-TFET)has been designed and optimized based on the traditional double-gate TFETs by introducing a C-shaped pocket region between the source and channel to improve th... A C-shaped pocket tunnel field effect transistor(CSP-TFET)has been designed and optimized based on the traditional double-gate TFETs by introducing a C-shaped pocket region between the source and channel to improve the device performance.A gate-to-pocket overlapping structure is also examined in the proposed CSP-TFET to enhance the gate controllability.The effects of the pocket length,pocket doping concentration and gate-to-pocket overlapping structure on the DC and analog/RF characteristics of the CSP-TFET are estimated after calibrating the tunneling model in double-gate TFETs.The DC and analog/RF performance such as on-state current(Ion),on/off current ratio(Ion/Ioff),subthreshold swing(SS)transconductance(g;),cut-off frequency(f_(T))and gain-bandwidth product(GBP)are investigated.The optimized CSPTFET device exhibits excellent performance with high I_(off)(9.98×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),as well as low SS(~12 m V/dec).The results reveal that the CSP-TFET device could be a potential alternative for the next generation of semiconductor devices. 展开更多
关键词 tunnel field effect transistor double gate POCKET
原文传递
Nanoscale Ⅲ-Ⅴ on Si-based junctionless tunnel transistor for EHF band applications
19
作者 Yogesh Goswami Pranav Asthana Bahniman Ghosh 《Journal of Semiconductors》 EI CAS CSCD 2017年第5期42-48,共7页
A single gate Ⅲ-Ⅴ junctionless tunnel field effect transistor(SG-JLTFET) has been reported which shows excellent dc characteristics at low power supply operation.This device has a thin uniformly n-type doped chann... A single gate Ⅲ-Ⅴ junctionless tunnel field effect transistor(SG-JLTFET) has been reported which shows excellent dc characteristics at low power supply operation.This device has a thin uniformly n-type doped channel of GaSb i.e.gallium antimonide which is grown epitaxially over silicon substrate.The DC performance parameters such as I(on),I(on)/I(off),average and point subthreshold slope as well as device parameters for analog applications viz.transconductance gm,transconductance generation efficiency gm/ID,various capacitances and the unity gain frequency fT are studied using a device simulator.Along with examining its endurance to short channel effects,the performances are also compared with a Silicon Dual Gate Junctionless Tunnel FET(DG-JLTFET).The DC and small signal analog performance reflects that GaSb SG-JLTFET has immense purview for extreme high-frequency and low-power applications. 展开更多
关键词 single gate junctionless tunnel field effect transistor (SG JL-TFET) gallium antimonide band-to-band tunnelling sub-threshold slope (SS)
原文传递
Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers
20
作者 Huifang Xu Yuehua Dai 《Journal of Semiconductors》 EI CAS CSCD 2017年第2期51-58,共8页
A two-dimensional analytical model of double-gate(DG) tunneling field-effect transistors(TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potentia... A two-dimensional analytical model of double-gate(DG) tunneling field-effect transistors(TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile,the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate,and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. 展开更多
关键词 double-gate tunnel field effect transistor(TFET) interface trapped charges analytical model
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部