A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Regio...A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient.展开更多
The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis...The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.展开更多
The effect of α phase on CuZnAl shape memo- ry alloy(SMA)has been systematically studied by electrical resistance method,quantitative measure- ment of micrography and transmission electron microscopy(TEM).It is found...The effect of α phase on CuZnAl shape memo- ry alloy(SMA)has been systematically studied by electrical resistance method,quantitative measure- ment of micrography and transmission electron microscopy(TEM).It is found that,by controlling the amount of α phase in(α+β)-CuZnAl alloy, phase transformation temperatures can be adjusted precisely in a wide range,while the good shape memory effect of CuZnAl is kept.In a word, quenching from(α+β)dual phase region is a rea- sonable method of adjusting phase transformation temperatures for CuZnAl alloy.展开更多
文摘A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient.
基金Project(50471025) supported by the National Natural Science Foundation of ChinaProject(20052028) supported by the Natural Science Foundation of Liaoning Province, ChinaProject(2006BAE04B09-7) supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period
文摘The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.
文摘The effect of α phase on CuZnAl shape memo- ry alloy(SMA)has been systematically studied by electrical resistance method,quantitative measure- ment of micrography and transmission electron microscopy(TEM).It is found that,by controlling the amount of α phase in(α+β)-CuZnAl alloy, phase transformation temperatures can be adjusted precisely in a wide range,while the good shape memory effect of CuZnAl is kept.In a word, quenching from(α+β)dual phase region is a rea- sonable method of adjusting phase transformation temperatures for CuZnAl alloy.