The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the...The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.展开更多
A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandator...A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandatory required for a successful authentication. Note that this scheme can not only check the legality of the users, but also verify their identity levels so as to grant them hierarchical access permissions to various resources of the protected systems or organizations. The authentication process is straightforward and could be implemented by a hybrid optic-electrical system. However, the system designing procedure involves an iterative Modified Phase Retrieval Algorithm (MPRA) and can only be achieved by digital means. Theoretical analysis and simulations both validate the effectiveness of our method.展开更多
Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major are...Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major area of research.The reflected light from oil slicks changes with the thickness of the oil.This is the theoretical basis of research on optical remote sensing of offshore oil slicks.A two-beam interference model that considers the offshore oil slick as a flat plate has been developed in this study.A quantitative remote sensing model which describes a series of processes that use oil slick thickness and reflectance as variables is established.The use of the Fresnel equation to analyze parameters in the model indicated that the key property of the quantitative relationship between the oil slick thickness and reflectance was ultimately the disappearance or extinction of the oil slick.This model has been tested and verified by data from offshore oil slick spectral response experiments.Results showed that the oil slick thickness remote sensing model can be theoretically analyzed and is efficient.The research indicated that the major cause of variations in the spectral response as a function of oil slick thickness was the different light-scattering characteristics.These characteristics can be used in remote sensing applications to identify the different types of offshore oil slicks.The theoretical interpretation of each parameter in this model led to the development of a look-up table of the model parameters which will improve the efficiency of future offshore oil slick remote sensing.展开更多
The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs...The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs was investigated by CHENG Li-jen et al., and they thought that the band gap of conventional oxide photorefractive crystal was too wide, so it is difficult to observe the temperature dependence of photorefractive effect in a general experimental condition. But the point of view has been proved not true by our experiment展开更多
基金Supported by the National Natural Science Foundation of China(11102047,11002037)the Special Funds of Central Colleges Basic Scientific Research Operating Expenses(HEUCF20111139)the Fundamental Research Foundation of Harbin Engineering University(002110260746)
文摘The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.
文摘A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandatory required for a successful authentication. Note that this scheme can not only check the legality of the users, but also verify their identity levels so as to grant them hierarchical access permissions to various resources of the protected systems or organizations. The authentication process is straightforward and could be implemented by a hybrid optic-electrical system. However, the system designing procedure involves an iterative Modified Phase Retrieval Algorithm (MPRA) and can only be achieved by digital means. Theoretical analysis and simulations both validate the effectiveness of our method.
基金supported by National Natural Science Foundation of China (Grant Nos. 40971186 and 41001196 )the Open Research Fund of Key Laboratory of Digital Earth,Center for Earth Observation and Digital Earth,Chinese Academy of Sciences (Grant No. 2010LDE007)
文摘Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major area of research.The reflected light from oil slicks changes with the thickness of the oil.This is the theoretical basis of research on optical remote sensing of offshore oil slicks.A two-beam interference model that considers the offshore oil slick as a flat plate has been developed in this study.A quantitative remote sensing model which describes a series of processes that use oil slick thickness and reflectance as variables is established.The use of the Fresnel equation to analyze parameters in the model indicated that the key property of the quantitative relationship between the oil slick thickness and reflectance was ultimately the disappearance or extinction of the oil slick.This model has been tested and verified by data from offshore oil slick spectral response experiments.Results showed that the oil slick thickness remote sensing model can be theoretically analyzed and is efficient.The research indicated that the major cause of variations in the spectral response as a function of oil slick thickness was the different light-scattering characteristics.These characteristics can be used in remote sensing applications to identify the different types of offshore oil slicks.The theoretical interpretation of each parameter in this model led to the development of a look-up table of the model parameters which will improve the efficiency of future offshore oil slick remote sensing.
文摘The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs was investigated by CHENG Li-jen et al., and they thought that the band gap of conventional oxide photorefractive crystal was too wide, so it is difficult to observe the temperature dependence of photorefractive effect in a general experimental condition. But the point of view has been proved not true by our experiment