期刊文献+
共找到23,122篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
1
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
2
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 bp network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver
3
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control bp neural network PID Moving chimera grid
下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:2
4
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination bp artificial neural network Damage probability Initiation delay
下载PDF
Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism 被引量:1
5
作者 Shuiping Zhang Xi Liang +2 位作者 Lin Shi Lei Yan Jun Tang 《Sound & Vibration》 EI 2023年第1期29-44,共16页
Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to ... Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum. 展开更多
关键词 FxLMS NNR-bpFxLMS line spectrum noise bp neural network feedback convergence speed
下载PDF
Prediction Model of Drilling Costs for Ultra-Deep Wells Based on GA-BP Neural Network 被引量:1
6
作者 Wenhua Xu Yuming Zhu +4 位作者 YingrongWei Ya Su YanXu Hui Ji Dehua Liu 《Energy Engineering》 EI 2023年第7期1701-1715,共15页
Drilling costs of ultra-deepwell is the significant part of development investment,and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost.In o... Drilling costs of ultra-deepwell is the significant part of development investment,and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost.In order to improve the prediction accuracy of ultra-deep well drilling costs,the item and the dominant factors of drilling costs in Tarim oilfield are analyzed.Then,those factors of drilling costs are separated into categorical variables and numerous variables.Finally,a BP neural networkmodel with drilling costs as the output is established,and hyper-parameters(initial weights and bias)of the BP neural network is optimized by genetic algorithm(GA).Through training and validation of themodel,a reliable prediction model of ultra-deep well drilling costs is achieved.The average relative error between prediction and actual values is 3.26%.Compared with other models,the root mean square error is reduced by 25.38%.The prediction results of the proposed model are reliable,and the model is efficient,which can provide supporting for the drilling costs control and budget planning of ultra-deep wells. 展开更多
关键词 Ultra-deep well drilling costs cost estimation bp neural network genetic algorithm
下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
7
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
8
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:2
9
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 bp神经网络 PSO-bp神经网络 GA-bp神经网络
下载PDF
基于BP神经网络的测量设备无关协议参数预测 被引量:1
10
作者 周江平 周媛媛 +1 位作者 周学军 李洁琼 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期611-616,共6页
针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,... 针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,从而获得更好的实时性和更低的计算复杂度,随后与基于随机森林和XGBoost的方法进行了比较。仿真结果表明,BP神经网络预测所得各参数的均方误差数量级为10^(-6)或更小,由该参数计算所得密钥生成率与最优密钥生成率比值的均值为0.998 8,且该应用中BP神经网络相对随机森林和XGBoost具有更好的预测性能。 展开更多
关键词 量子光学 量子密钥分发 bp神经网络 参数优化 测量设备无关
下载PDF
基于BP神经网络的九寨沟地区地震滑坡危险性预测研究 被引量:4
11
作者 张迎宾 徐佩依 +6 位作者 林剑锋 伍新南 柳静 相晨琳 何云勇 杨昌凤 许冲 《工程地质学报》 CSCD 北大核心 2024年第1期133-145,共13页
BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为... BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为70%的训练样本集用于九寨沟地区地震滑坡危险性预测,以及30%的验证样本集对预测结果的精度进行评估。选取高程、坡度、坡向、平行发震断层距离、垂直发震断层距离、震中距离、距道路距离、地面峰值加速度(PGA)以及岩性共9个影响因子,分析发震断层对地震滑坡的控制作用,并总结九寨沟地区地震滑坡空间分布规律特征,其中发震断层、岩性和坡度对九寨沟地区地震滑坡分布产生重要影响。利用模型得到九寨沟地震滑坡危险性预测图,结果显示73.19%的滑坡位于极高和高危险区域,与实际地震滑坡分布基本相符。通过30%的验证样本集来绘制预测成功率曲线,结果表明模型预测成功率(AUC值)为0.90,证实了BP神经网络在九寨沟地区地震滑坡危险性预测中具有良好的精度和拟合能力,评价结果为后续地震滑坡灾害预测和防震减灾工作提供了科学的参考。 展开更多
关键词 九寨沟地区 bp神经网络 地震滑坡 危险性评价
下载PDF
基于GRU-CNN双网络输出构建BP模型的径流预测方法 被引量:1
12
作者 张玥 姜中清 +2 位作者 周伊 周静姝 王宇露 《水力发电》 CAS 2024年第6期17-22,共6页
提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预... 提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测。首先,构建GRU和CNN深度学习网络,同步输出2条径流预测序列;其次,在已知时段内,构建2条预测结果与实测值之间的多变量BP模型;最后,基于双网络输出预测值,通过确定的BP模型输出径流预测结果。经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升。 展开更多
关键词 洪水预报 径流预测 双网络输出 GRU CNN bp神经网络
下载PDF
基于BP神经网络的高桩码头基桩损伤识别研究 被引量:1
13
作者 郑永来 肖飞 +1 位作者 潘坦博 韩雨莘 《建筑技术》 2024年第3期371-376,共6页
针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以... 针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以第三类损伤指标ULSC和δFC作为训练样本,实现了对基桩局部损伤的准确定位。在建立合理的高桩码头有限元模型的基础上,构建了基于BP神经网络的损伤定位模型,并使用ABAQUS模拟数据和实测振动信号数据进行训练和测试。实验结果表明,该神经网络模型具有较高的定位准确性和鲁棒性,在不同损伤工况和10%噪声水平下仍表现优异。 展开更多
关键词 bp神经网络 损伤识别 基桩损伤 健康监测
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
14
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
采用改进BP-PID控制的机器人避障仿真研究 被引量:1
15
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 bp神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
16
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 PSO-bp神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
原文传递
双循环背景下石化企业供应链韧性评价研究——基于AHP-BP方法 被引量:2
17
作者 赵丽洲 张宁峰 《辽宁石油化工大学学报》 CAS 2024年第1期89-96,共8页
随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链... 随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链韧性强度进行评估,确定了供应链韧性水平。结果表明,各石化企业的供应链韧性强度存在较大差异,供应链韧性整体水平偏低。在研究结果的基础上,对韧性供应链锻造提出了切实可行的建议。 展开更多
关键词 石化企业 供应链韧性 层次分析法 bp神经网络算法
下载PDF
基于拌和生产数据的BP神经网络混凝土抗压强度预测 被引量:1
18
作者 王海英 李子彤 +1 位作者 张英治 王晨光 《建筑科学与工程学报》 CAS 北大核心 2024年第3期18-25,共8页
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立... 为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6∶2∶2比例划分为训练集、验证集和测试集;分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值;8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa;利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致;该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。 展开更多
关键词 混凝土 预测模型 bp神经网络 抗压强度 拌和生产监控数据
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
19
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 PSO-bp神经网络
原文传递
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
20
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部