本文研究一类具纯离散谱的非自伴算子,证明了该类算子在弱拓扑意义下可以特征展开的充分必要条件是该类算子是u-标的(u-scalar),又等价于该类算子拟仿射相似于自伴算子.并给出例子,说明其在弱拓扑意义下可以特征展开,但不属于经典的标...本文研究一类具纯离散谱的非自伴算子,证明了该类算子在弱拓扑意义下可以特征展开的充分必要条件是该类算子是u-标的(u-scalar),又等价于该类算子拟仿射相似于自伴算子.并给出例子,说明其在弱拓扑意义下可以特征展开,但不属于经典的标型谱算子(Spectral operator of scalar type).展开更多
Let н be a complex, separable, infinite dimensional Hilbert space, T ε(H). (u+K)(T) denotes the (u+k)-orbit of T, i.e., (u+k)(T) = {R-1TR: R is invertible and of the form unitary plus compact}...Let н be a complex, separable, infinite dimensional Hilbert space, T ε(H). (u+K)(T) denotes the (u+k)-orbit of T, i.e., (u+k)(T) = {R-1TR: R is invertible and of the form unitary plus compact}. Let be an analytic and simply connected Cauchy domain in C and n ε N. A(, n) denotes the class of operators, each of which satisfies (i) T is essentially normal; (ii) σ(T) =, ρF(T) ∩ σ(T) = ; (iii) ind (λ-T) = -n, nul (λ-T) = 0 (λ∈Ω ). It is proved that given T1, T2 ε A(, n) and ε > 0, there exists a compact operator K with K <ε such that T1 +Kε (u+k)(T2). This result generalizes a result of P. S. Guinand and L. Marcoux [6,15]. Furthermore, the authors give a character of the norm closure of (u+K)(T), and prove that for each T ε A(, n), there exists a compact (SI) perturbation of T whose norm can be arbitrarily small.展开更多
基金the Natural Science Foundation of China(11361042,11071108)the Natural Science Foundation of Jiangxi Province of China(2010GZS0147)the Youth Foundation of theEducation Department of Jiangxi(GJJ13012)
文摘本文研究一类具纯离散谱的非自伴算子,证明了该类算子在弱拓扑意义下可以特征展开的充分必要条件是该类算子是u-标的(u-scalar),又等价于该类算子拟仿射相似于自伴算子.并给出例子,说明其在弱拓扑意义下可以特征展开,但不属于经典的标型谱算子(Spectral operator of scalar type).
文摘Let н be a complex, separable, infinite dimensional Hilbert space, T ε(H). (u+K)(T) denotes the (u+k)-orbit of T, i.e., (u+k)(T) = {R-1TR: R is invertible and of the form unitary plus compact}. Let be an analytic and simply connected Cauchy domain in C and n ε N. A(, n) denotes the class of operators, each of which satisfies (i) T is essentially normal; (ii) σ(T) =, ρF(T) ∩ σ(T) = ; (iii) ind (λ-T) = -n, nul (λ-T) = 0 (λ∈Ω ). It is proved that given T1, T2 ε A(, n) and ε > 0, there exists a compact operator K with K <ε such that T1 +Kε (u+k)(T2). This result generalizes a result of P. S. Guinand and L. Marcoux [6,15]. Furthermore, the authors give a character of the norm closure of (u+K)(T), and prove that for each T ε A(, n), there exists a compact (SI) perturbation of T whose norm can be arbitrarily small.