By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation cons...By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation constructed by an integrated installation technique. According to the simulation results, under the ship collision, a certain range of plastic zone appears within a local area of arc transition structure of the bucket foundation, and the concrete plastic zone is seriously damaged. As the stress level of OWT tower is relatively low, the OWT tower is less affected. A great inertial force is generated at the top of the OWT tower as the mass of nacelle and blades is up to 400 t. The displacement of the tower is in the opposite direction of the ship collision at the end of 1 s under the action of inertial force. There is only a minor damage in the ship bow. Most of the kinetic energy is transformed into the plastic dissipation and absorbed by the arc transition structure of bucket foundation.展开更多
Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to...Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to a large ocean-going ship in its shipping line, so-called springing and whipping, which are important for the determination of design wave load and fatigue damage as well. Because of the huge scale of an ultra large ore cartier (ULOC), it will suffer seldom slamming events in the ocean. The resonance vibration with high frequency is springing, which is caused by continuous wave excitation. In this paper, the wave-induced vibrations of the ULOC are addressed by experimental and numerical methods according to 2D and 3D hydroelasticity theories and an elastic model under full-load and ballast conditions. The influence of loading conditions on high-frequency vibration is studied both by numerical and experimental results. Wave-induced vibrations are higher under ballast condition including the wave frequency part, the multiple frequencies part, the 2-node and the 3-node vertical bending parts of the hydroelastic responses. The predicted results from the 2D method have less accuracy than the 3D method especially under ballast condition because of the slender-body assumption in the former method. The applicability of the 2D method and the further development of nonlinear effects to 3D method in the prediction of hydroelastic responses of the ULOC are discussed.展开更多
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA051705)National Natural Science Foundation of China(No.51109160)International Science and Technology Cooperation Program of China(2012DFA70490)
文摘By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation constructed by an integrated installation technique. According to the simulation results, under the ship collision, a certain range of plastic zone appears within a local area of arc transition structure of the bucket foundation, and the concrete plastic zone is seriously damaged. As the stress level of OWT tower is relatively low, the OWT tower is less affected. A great inertial force is generated at the top of the OWT tower as the mass of nacelle and blades is up to 400 t. The displacement of the tower is in the opposite direction of the ship collision at the end of 1 s under the action of inertial force. There is only a minor damage in the ship bow. Most of the kinetic energy is transformed into the plastic dissipation and absorbed by the arc transition structure of bucket foundation.
基金supported by China Shipbuilding Industry Corporationthe Academy of China Ship Scientific Research Center(Grant No.62101010103)
文摘Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to a large ocean-going ship in its shipping line, so-called springing and whipping, which are important for the determination of design wave load and fatigue damage as well. Because of the huge scale of an ultra large ore cartier (ULOC), it will suffer seldom slamming events in the ocean. The resonance vibration with high frequency is springing, which is caused by continuous wave excitation. In this paper, the wave-induced vibrations of the ULOC are addressed by experimental and numerical methods according to 2D and 3D hydroelasticity theories and an elastic model under full-load and ballast conditions. The influence of loading conditions on high-frequency vibration is studied both by numerical and experimental results. Wave-induced vibrations are higher under ballast condition including the wave frequency part, the multiple frequencies part, the 2-node and the 3-node vertical bending parts of the hydroelastic responses. The predicted results from the 2D method have less accuracy than the 3D method especially under ballast condition because of the slender-body assumption in the former method. The applicability of the 2D method and the further development of nonlinear effects to 3D method in the prediction of hydroelastic responses of the ULOC are discussed.