期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Development Features of Supercritical (Ultra-Supercritical) Technology in the World and Experiences We Can Learn 被引量:5
1
作者 Weixiang Ye 《Journal of Power and Energy Engineering》 2016年第6期1-3,共3页
The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercri... The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercritical (ultra-supercritical) technology, the corresponding revelations are given in this paper. That is: It is an inevitable choice to develop supercritical (ultra-supercritical) technology if we want to improve the thermal efficiency and heat efficiency. 展开更多
关键词 Supercritical (ultra-supercritical) Technology The Thermal Efficiency Heat Efficiency
下载PDF
Exergy Analysis and Thermal Optimization of a Double-Turbine Regeneration System in a Ultra-Supercritical Double-Reheat Unit
2
作者 Shidan Chi Tao Luan +2 位作者 Yan Liang Xundong Hu Yan Gao 《Fluid Dynamics & Materials Processing》 EI 2021年第1期71-80,共10页
Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a powergeneration system. In the present study, the typical problem connected to the excessively high superheat ... Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a powergeneration system. In the present study, the typical problem connected to the excessively high superheat degree ofextraction steam in an ultra-supercritical (USC) double-reheat unit is considered. Using a 1000 MW power plantas an example, two systems (case 1 and case 2) are proposed, both working in combination with a regenerativesteam turbine. The thermal performances of these two systems are compared with that of the original systemthrough a heat balance method and an exergy balance strategy. The results reveal that the two coupled systemscan significantly reduce the superheat degree of extraction steam, turbine heat rate, and coal consumption of theunit and improve the energy utilization efficiency. These results will provide useful theoretical guidance to futureinvestigators wishing to address the general problem relating to energy conservation and modelling of the coupledextraction steam regenerative system of USC double-reheat units. 展开更多
关键词 ultra-supercritical unit exergy loss thermal performance regenerative steam turbine superheat degree
下载PDF
Study on Calculation Method for Partition of Heat Transfer in an Ultra-supercritical Boiler
3
作者 Ye Teng Zhongxiao Zhang +3 位作者 Xudan Liu Wei Liu Tuo Zhou Ming Zhu 《Energy and Power Engineering》 2013年第4期311-314,共4页
Use a 1000MW ultra-supercritical tower boiler as the research object. On the basis of one dimensional model, simplify the tube heat transfer model and the radiation heat transfer model;establish the two-dimensional ar... Use a 1000MW ultra-supercritical tower boiler as the research object. On the basis of one dimensional model, simplify the tube heat transfer model and the radiation heat transfer model;establish the two-dimensional area calculation model with the regional method;?summarize the heat load distribution of flue gas temperature and water wall surface;and compare with the measured data. The error range of the result is acceptable on the project. The distribution of water wall surface heat load along the furnace width and the area where heat transfer deterioration?cause easily along the furnace height direction are studied with the model and algorithm on different boiler load conditions. All these provide the reference for the design and operation of the ultra supercritical boiler. 展开更多
关键词 ultra-supercritical FLUE Gas Temperature HEAT Load HEAT Transfer DETERIORATION
下载PDF
Model Identification Based on Subspace Model Identification of Main Steam Temperature in Ultra-Supercritical Coal-Fired Power Unit
4
作者 陈世和 张曦 +2 位作者 阎威武 胡勇 邵慧鹤 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期724-728,共5页
Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature ... Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit. 展开更多
关键词 subspace model identification(SMI) main steam temperature ultra-supercritical(USC) unit
下载PDF
Energy-Saving Optimization Study on 700℃ Double Reheat Advanced Ultra-Supercritical Coal-Fired Power Generation System
5
作者 WANG Jing DUAN Liqiang +3 位作者 YANG Jinfu YANG Ming JING Yutian TIAN Liguo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期30-43,共14页
700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss prob... 700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively. 展开更多
关键词 700℃ advanced ultra-supercritical(A-USC) double reheat cycle extraction steam superheat degree unit consumption method system optimization
原文传递
Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model 被引量:4
6
作者 Jieqiang Ji Leming Cheng +4 位作者 Yangjun Wei Junfeng Wang Xinyu Gao Mengxiang Fang Qinhui Wang 《Particuology》 SCIE EI CAS CSCD 2020年第2期77-87,共11页
NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was develope... NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended. 展开更多
关键词 NOx/N2O emissions 2-D comprehensive combustion model Circulating fluidized bed ultra-supercritical
原文传递
Steam Pressure Control of 1000 MW Ultra-Supercritical Coal-Fired Power Unit Based on Multi-Model Predictive Control 被引量:2
7
作者 王国良 丁宝苍 阎威武 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第1期86-93,共8页
Ultra-supercritical(USC) coal-fired unit is more and more popular in these years for its advantages.But the control of USC unit is a difficult issue for its characteristic of nonlinearity, large dead time and coupling... Ultra-supercritical(USC) coal-fired unit is more and more popular in these years for its advantages.But the control of USC unit is a difficult issue for its characteristic of nonlinearity, large dead time and coupling among inputs and outputs. In this paper, model predictive control(MPC) method based on multi-model and double layered optimization is introduced for coordinated control of USC unit running in sliding pressure mode and fixed pressure mode. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. output power, main steam temperature and main steam pressure). The step responses for the dynamic matrix control(DMC) are constructed using the three inputs by the three outputs under both pressure control mode. Piecewise models are built at selected operation points. In simulation, the output power follows load demand quickly and main steam temperature can be controlled around the setpoint closely in load tracking control. The simulation results show the effectiveness of the proposed methods. 展开更多
关键词 ultra-supercritical COORDINATED CONTROL MULTI-MODEL model PREDICTIVE CONTROL steam pressure CONTROL
原文传递
Thermal-Hydraulic Calculation and Analysis on Evaporator System of a 1000 MW Ultra-Supercritical Pulverized Combustion Boiler with Double Reheat 被引量:2
8
作者 WAN Li YANG Dong +2 位作者 ZHOU Xihong DONG Le LI Juan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第3期807-816,共10页
A double reheat ultra-supercritical boiler is an important development direction for high-parameter and large-capacity coal-fired power plants due to its high thermal efficiency and environmental value.China has devel... A double reheat ultra-supercritical boiler is an important development direction for high-parameter and large-capacity coal-fired power plants due to its high thermal efficiency and environmental value.China has developed a 1000 MW double reheat ultra-supercritical boiler with steam parameters of 35 MPa at 605℃/613℃/613℃.Reasonable water wall design is one of the keys to safe and reliable operation of the boiler.In order to examine the thermal-hydraulic characteristics of the double reheat ultra-supercritical boiler,the water wall system was equivalent to a flow network comprising series-parallel circuits,linking circuits and pressure nodes,and a calculation model was built on account of the conservation equations of energy,momentum and mass.Through the iterative solving of nonlinear equations,the prediction parameters of the water wall at boiler maximum continue rate(BMCR),75%turbine heat-acceptance rate(THA)and 30%THA loads,including total pressure drops,flow distribution,outlet steam temperatures,fluid and metal temperatures were gotten.The results of calculation exhibit excellent thermal-hydraulic characteristics and substantiate the feasibility of the water wall design of the double reheat ultra-supercritical boiler. 展开更多
关键词 double reheat ultra-supercritical boiler water wall flow network method thermal-hydraulic characteristic
原文传递
Effect of SiO_(2) and B_(2)O_(3) on crystallization and structure of CaF2–CaO–Al_(2)O_(3)-based slag for electroslag remelting of ultra-supercritical rotor steel 被引量:1
9
作者 Yi Huang Cheng-bin Shi +3 位作者 Xiu-xiu Wan Jiang-ling Li Ding-li Zheng Jing Li 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第12期1530-1540,共11页
Regarding development of the dedicated slag for electroslag remelting,crystallization characteristics of the slag exert a strong influence on the initial solidification of liquid metal in mold and surface quality of a... Regarding development of the dedicated slag for electroslag remelting,crystallization characteristics of the slag exert a strong influence on the initial solidification of liquid metal in mold and surface quality of as-cast ingot.The crystallization behavior of CaF_(2)-CaO-Al_(2)O_(3)-based slag with varying SiO_(2)and B_(2)O_(3)contents and their correlation with the slag structure were investigated.Increasing SiO_(2)(0.24-8.95 mass%)and B_(2)O_(3)(0-3.20 mass%)contents lowers the crystallization temperature and suppresses the crystallization of the slag melts,as well as decreases the sizes of the crystalline phases.The crystalline phases precipitated during continuous cooling of the slag melts are faceted 11CaO·7Al_(2)O_(3)·CaF_(2),faceted or spherical CaF_(2),and non-faceted MgO·Al_(2)O_(3)(or MgO)in sequence irrespective of the SiO_(2)and B_(2)O_(3)contents of the slag.The polymerization degree of slag melts increases with increasing either SiO_(2)or B_(2)O_(3)contents.The crystallization of the slag melts is increasingly retarded with increasing the SiO_(2)and B_(2)O_(3)contents of the slag caused by increased component diffusion resistance originating from increased polymerization degree of the slag melts. 展开更多
关键词 CRYSTALLIZATION Slag structure Polymerization degree Electroslag remelting ultra-supercritical rotor steel
原文传递
Nickel-base superalloys for USC power plants 被引量:1
10
作者 John de BARBADILLO Brian BAKER 《Baosteel Technical Research》 CAS 2010年第S1期84-,共1页
The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superal... The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superalloys such as 263 and 617 were initially evaluated under the European THERMIE project beginning in the 1990s.An entirely new age-hardened alloy 740 which possesses exceptional fireside corrosion resistance and creep strength was also developed for boiler tubing capable of serving at 700C.Subsequently,interest in the USA considered other product forms such as steam header piping and steam turbine forgings for service as high as 760C.A more stable and weldable alloy version now called 740H was developed to meet these more demanding conditions.This paper summarizes the current status of work on alloys 740 and 740H. 展开更多
关键词 nickel-base alloys ultra-supercritical steam boiler creep-rupture WELDABILITY
下载PDF
Development of TP310HCbN(07Cr25Ni21CbN) austenitic stainless steel tubes 被引量:1
11
作者 WANG Qijiang~(1)),ZHU Changchun~(1)) and HONG Jie~(1)) 1) Baosteel Iron &Steel Co.,Ltd.,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) Special Steel Business Unit,Baosteel Iron & Steel Co.,Ltd.,Shanghai 200940,China 《Baosteel Technical Research》 CAS 2010年第S1期70-,共1页
Improving the unit heat efficiency,reducing coal consumption and the emission of CO2 and meeting the requirements of environmental protection and energy conservation is the goal of the boiler and the power industry.De... Improving the unit heat efficiency,reducing coal consumption and the emission of CO2 and meeting the requirements of environmental protection and energy conservation is the goal of the boiler and the power industry.Developments of large capacity and high parameter ultra-supercritical(USC) units are the tendency of the power industry.There is no doubt that the development of USC units is based on the development of materials, especially the materials used for super-heater and reheater in high-temperature USC boiler.Due to the long time exposure to the harsh environment,such as bearing the 600℃steam oxidation,and withstanding the corrosive flue gas and fly ash erosion,the materials require not only good high-temperature strength,but also a good corrosion resistance.In consideration of the requirements cited above,foreign countries had developed TP310HCbN (07Cr25Ni21CbN) austenitic heat-resistant steel.However,the domestic demands for this material still depend on import and the cost is high,so the boiler and the power industry expects eagerly that these steels can be produced by domestic metallurgical industry,especially Baosteel,to replace the imported products.In order to satisfy the requirements of domestic manufacturing super-heater and reheater used in ultra-supercritical power boiler,after developed T23、T91、T92、S30432 high pressure boiler tube,Baosteel began to develop TP310HCbN (07Cr25Ni21CbN)austenitic stainless steel tube in January of 2007.This study describes the composition design, the manufacturing process of product,and the assessment of performance of Baosteel’s TP310HCbN (07Cr25Ni21CbN).The data indicates that properties of Baosteel’s TP310HCbN(07Cr25Ni21CbN) conform to the ASME SA-213 standard and GB5310 standard,so it can substitute the imported products and is suitable for manufacturing power station boiler of great capacity and high steam parameters. 展开更多
关键词 ultra-supercritical boiler TP310HCbN(07Cr25Ni21CbN) tube PROPERTY
下载PDF
Tensile Properties of Cast Alloy IN625 in Relation to δ Phase Precipitation 被引量:1
12
作者 Yi-Qiang Mu Chang-Shuai Wang +1 位作者 Wen-Long Zhou Lan-Zhang Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第4期535-540,共6页
The relationship between the tensile properties and S(delta) phase precipitation in cast alloy IN625 was investigated in this paper. Although the influences of δ phase on the mechanical properties have been pointed o... The relationship between the tensile properties and S(delta) phase precipitation in cast alloy IN625 was investigated in this paper. Although the influences of δ phase on the mechanical properties have been pointed out in our previous work, the relationship is still not directly determined due to the coexistence of γ"(gamma double prime) and δ precipitates. In order to exclude the effect from γ" phase, various fractions of δ precipitates with few γ" precipitates were obtained by a set of experimental alloys aging at 750 ℃, and tensile tests were conducted in parallel. The results showed that both yield strength and ultimate tensile strength increased nearly in linear with increasing δ phase fraction, while the elongation was relatively and limitedly affected by δ precipitation when the area fraction of δ phase was above 10%. 展开更多
关键词 δ Phase CAST ALLOY IN625 TENSILE properties Advanced ultra-supercritical(AUSC)
原文传递
Life Cycle Assessment Analysis and Comparison of 1000 MW S-CO_(2)Coal Fired Power Plant and 1000 MW USC Water-Steam Coal-Fired Power Plant 被引量:1
13
作者 LI Mingjia WANG Ge +2 位作者 XU Jinliang NI Jingwei SUN Enhui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期463-484,共22页
The objective of this paper is to understand the benefits that one can achieve for large-scale supercritical CO_(2)(S-CO_(2))coal-fired power plants.The aspects of energy environment and economy of 1000 MW S-CO_(2)coa... The objective of this paper is to understand the benefits that one can achieve for large-scale supercritical CO_(2)(S-CO_(2))coal-fired power plants.The aspects of energy environment and economy of 1000 MW S-CO_(2)coal-fired power generation system and 1000 MW ultra-supercritical(USC)water-steam Rankine cycle coal-fired power generation system are analyzed and compared at the similar main vapor parameters,by adopting the neural network genetic algorithm and life cycle assessment(LCA)methodology.Multi-objective optimization of the 1000 MW S-CO_(2)coal-fired power generation system is further carried out.The power generation efficiency,environmental impact load,and investment recovery period are adopted as the objective functions.The main vapor parameters of temperature and pressure are set as the decision variables.The results are concluded as follows.First,the total energy consumption of the S-CO_(2)coal-fired power generation system is 10.48 MJ/k Wh and the energy payback ratio is 34.37%.The performance is superior to the USC coal-fired power generation system.Second,the resource depletion index of the S-CO_(2)coal-fired power generation system is 4.38μPRchina,90,which is lower than that of the USC coal-fired power generation system,and the resource consumption is less.Third,the environmental impact load of the S-CO_(2)coal-fired power generation system is 0.742 m PEchina,90,which is less than that of the USC coal-fired power generation system,0.783 m PEchina,90.Among all environmental impact types,human toxicity potential HTP and global warming potential GWP account for the most environmental impact.Finally,the investment cost of the S-CO_(2)coal-fired power generation system is generally less than that of the USC coal-fired power generation system because the cost of the S-CO_(2)turbine is only half of the cost of the steam turbine.The optimal turbine inlet temperature T_(5)becomes smaller,and the optimal turbine inlet pressure is unchanged at 622.082°C/30 MPa. 展开更多
关键词 S-CO_(2)power plant ultra-supercritical water-steam Rankine cycle power plant life cycle assessment energy efficiency environment impact economic performance
原文传递
Investigation of reheat cracking susceptibility in CGHAZ of modified T23 steel
14
作者 Ren-yuan Zhou Shi-xian Li +2 位作者 Li-hui Zhu Guo-li Zhai Ming Song 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第11期1417-1425,共9页
T23 steel(2.25Cr–1Mo–1.6W–0.24V–0.05Nb,in wt.%)has been widely used as water walls in ultra-supercritical(USC)power plants.However,high reheat cracking susceptibility of T23 steel hazarded the safety of USC power ... T23 steel(2.25Cr–1Mo–1.6W–0.24V–0.05Nb,in wt.%)has been widely used as water walls in ultra-supercritical(USC)power plants.However,high reheat cracking susceptibility of T23 steel hazarded the safety of USC power plants.It is aimed to improve the reheat cracking susceptibility of T23 steel from the perspective of modifying chemical composition.Gleeble-3800 thermal simulator was used to simulate the coarse-grained heat-affected zone(CGHAZ)in T23 and modified T23 steels via thermal simulation of welding,and then evaluate the reheat cracking susceptibility in CGHAZ of T23 and modified T23 steels by the isothermal slow strain rate tensile test.The microstructure was systematically investigated by optical microscopy,scanning electron microscopy and transmission electron microscopy.The results show that the reheat cracking susceptibility of modified T23 steel is extremely improved.Compared with T23 steel,there are fewer M23C6 particles at the grain boundaries in modified T23 steel,and the degree of intergranular weakening is smaller.At the same time,not only MX in the grain interiors but also the solid-solutioned C and W in the matrix decrease in modified T23 steel,leading to the decline of intragranular strengthening.In addition,small grain size is beneficial to the improvement of the reheat cracking susceptibility of modified T23 steel.The decreased number of M23C6 at grain boundaries helps to retard the formation and propagation of reheat cracks because of decreased denuded zones. 展开更多
关键词 Reheat cracking susceptibility T23 steel Gleeble-3800 thermal simulator PRECIPITATE ultra-supercritical power plant
原文传递
Large eddy simulation of a 660 MW utility boiler under variable load conditions
15
作者 Haoshu SHEN Yuxin WU +3 位作者 Minmin ZHOU Hai ZHANG Guangxi YUE Junfu LYU 《Frontiers in Energy》 SCIE CSCD 2021年第1期124-131,共8页
Large eddy simulation (LES) has become a promising tool for pulverized coal combustion with the development of computational fluid dynamics (CFD) technologies in recent years. LES can better capture the unsteady featu... Large eddy simulation (LES) has become a promising tool for pulverized coal combustion with the development of computational fluid dynamics (CFD) technologies in recent years. LES can better capture the unsteady features and turbulent structures of coal jet flame than Reynolds averaged Navier Stokes (RANS). The coal-fired power plants in China are now required to be operated in a wide load range and quickly respond to the electric grid. The boiler performance of variable loads should be evaluated in terms of flow, heat transfer, and combustion processes. In this paper, LES was applied to simulate a 660 MW ultra-supercritical boiler under BMCR (boiler maximum continue rate), 75%THA-100, and 50%THA-100 conditions. The predicted gas velocities agree well with the thermal calculation and the temperature error is less than 130 K. The simulation results show that the operation load has significant effects on the boiler performance. It is also proved that LES can provide guidance for the design and operation of advanced coal-fired boilers. 展开更多
关键词 large eddy simulation ultra-supercritical boiler operation load
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部