A carbon-nanotube-based normally-on-driving under-gate field emission display(FED)panel and its operation principle are presented.In this panel,field emission electrons are extracted directly from the cathode by the h...A carbon-nanotube-based normally-on-driving under-gate field emission display(FED)panel and its operation principle are presented.In this panel,field emission electrons are extracted directly from the cathode by the high anode voltage.The image is realized by modulating the voltage of under-gate,whose value is less than the cathode voltage,to stop the cathode producing field emission electrons.The electric field inside the emission region is calculated by the finite element method.The emission property of the cathode is also studied by numerical calculation method.The results indicate that a uniform and large emission area can be obtained in this new under-gate FED panel.This study provides powerful theoretic support for the feasibility of this new kind of under-gate FED panel.展开更多
基金supported by the National Key Basic Research Program 973 (No.2003CB314706).
文摘A carbon-nanotube-based normally-on-driving under-gate field emission display(FED)panel and its operation principle are presented.In this panel,field emission electrons are extracted directly from the cathode by the high anode voltage.The image is realized by modulating the voltage of under-gate,whose value is less than the cathode voltage,to stop the cathode producing field emission electrons.The electric field inside the emission region is calculated by the finite element method.The emission property of the cathode is also studied by numerical calculation method.The results indicate that a uniform and large emission area can be obtained in this new under-gate FED panel.This study provides powerful theoretic support for the feasibility of this new kind of under-gate FED panel.