期刊文献+
共找到11,274篇文章
< 1 2 250 >
每页显示 20 50 100
Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths
1
作者 LI Da-yong HOU Xin-yu +2 位作者 ZHANG Yu-kun MA Shi-li LI Shan-shan 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期989-999,共11页
Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction res... Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized. 展开更多
关键词 suction caisson suction-assisted installation model tests undrained shear strength of clay soil deformation
下载PDF
Modeling the Undrained Shear Strength with Soil Index Properties for Niger Delta Soft Clays
2
作者 Chigozie Dimgba Ify L. Nwaogazie Akuro Big-Alabo 《Open Journal of Civil Engineering》 CAS 2023年第1期113-126,共14页
The aim of this study was to model the Undrained Shear Strength (USS) of soil found in the coastal region of the Niger Delta in Nigeria with some soil properties. The undrained shear strength (USS) is a key parameter ... The aim of this study was to model the Undrained Shear Strength (USS) of soil found in the coastal region of the Niger Delta in Nigeria with some soil properties. The undrained shear strength (USS) is a key parameter needed for most geotechnical/structural designs. Accurate determination of the USS of soft clays can be challenging to obtain in the laboratory due to the difficulty in remoulding the clay to its in-situ conditions before testing and more accurate test such as Cone Penetration test (CPT) can be quite expensive. This study was carried out at Escravos site which is located in Delta state, Nigeria. Three Boreholes were drilled and soil samples were collected at 0.75 m intervals up to a depth of 45 m. Laboratory tests were used to obtain the moisture content, bulk unit weight, liquid and plastic limit, while CPT was used in obtaining the undrained shear strength. Classification of the soil samples was done by adopting the Unified Soil Classification System and various models relating the USS with the soil properties were developed. The result showed that most of the soils at Escravos site were predominately inorganic clay of high plasticity which are problematic due to the expansion and shrinking nature of this type of soil. The model developed showed that the soil properties that gave the best fit with the USS were the moisture content and effective stress of the soil. The coefficient of determination (R<sup>2</sup>) and the root mean square error (RMSE) obtained for this model were 0.805 and 6.37 KN/m<sup>2</sup>, respectively. 展开更多
关键词 undrained shear strength Inorganic Clay Escravos Multiple Regression Modelling
下载PDF
Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization 被引量:33
3
作者 Wengang Zhang Chongzhi Wu +2 位作者 Haiyi Zhong Yongqin Li Lin Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期469-477,共9页
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo... Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model. 展开更多
关键词 undrained shear strength Extreme gradient boosting Random forest Bayesian optimization k-fold CV
下载PDF
CPT-Based estimation of undrained shear strength of fine-grained soils in the Huanghe River Delta
4
作者 Zhongnian Yang Xuesen Liu +4 位作者 Lei Guo Yuxue Cui Xiuting Su Chao Jia Xianzhang Ling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第5期136-146,共11页
The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive fin... The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive finegrained soil located at the river-sea boundary.The cone penetration test(CPT)is a convenient and effective in situ testing method which can accurately identify various soil parameters.Studies on undrained shear strength only roughly determine the fine content(FC)without making the FC effect clear.We studied four stations formed in different the Huanghe River Delta periods.We conducted in situ CPT and corresponding laboratory tests,examined the fine content influence on undrained shear strength(S_(u)),and determined the cone coefficient(N_(k)).The conclusions are as follows.(1)The fine content in the area exceeded 90%,and the silt content was high,accounting for more than 70%of all fine particle compositions.(2)The undrained shear strength gradually increased with depth with a maximum of approximately 250 kPa.When the silt content was lower than 60%–70%,the undrained shear strength decreased.(3)The silt and clay content influenced undrained shear strength,and the fitted f_(s)h/q_(t) function model was established,which could be applied to strata with a high fine content.The cone coefficients were between 20 and 25,and the overconsolidated soil layer had a greater cone coefficient. 展开更多
关键词 Huanghe River(Yellow River)Delta fine content(FC) cone penetration test(CPT) undrained shear strength(S_(u)) cone coefficient(N_(k))
下载PDF
Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea 被引量:13
5
作者 Yanlong Li Gaowei Hu +3 位作者 Nengyou Wu Changling Liu Qiang Chen Chen'an Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第3期114-123,共10页
The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in th... The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in the Shenhu area, northern South China Sea, where China's first marine hydrate exploitation operation is due to be located. The validation of the undrained shear strength prediction model based on CPTU parameters. Different laboratory tests, including pocket penetrometer, torvane, miniature vane and unconsolidated undrained triaxial tests, are employed to solve empirical cone coefficients by statistical and mathematical methods. Finally, an optimized model is proposed to describe the longitudinal distribution of undrained shear strength in calcareous clay strata in the Shenhu area. Research results reveal that average empirical cone coefficients based on total cone resistance, effective resistance, and excess-pore pressure are 13.8, 4.2 and 14.4, respectively. The undrained shear strength prediction model shows a good fit with the laboratory results only within specific intervals based on their compaction degree and gas-bearing conditions. The optimized prediction model in piecewise function format can be used to describe the longitudinal distribution of the undrained shear strength for calcareous clay within all depth intervals from the mud-line to the upper boundary of hydrate-bearing sediments(HBS). The optimized prediction result indicates that the effective cone resistance model is suitable for very soft to firm calcareous clays,the excess-pore pressure model can depict the undrained shear strength for firm to very stiff but gas-free clays,while the total cone resistance model is advantageous for evaluating the undrained shear strength for very stiff and gassy clays. The optimized model in piecewise function format can considerably improve the adaptability of empirical models for calcareous clay in the Shenhu area. These results are significant for safety evaluations of proposed hydrate exploitation projects. 展开更多
关键词 PIEZOCONE penetration TEST HYDRATE exploitation TEST undrained shear strength CALCAREOUS clay Shenhu area South China Sea
下载PDF
Revisiting the Bjerrum's correction factor:Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength 被引量:1
6
作者 Kamil Kayabali Ozgur Akturk +2 位作者 Mustafa Fener Orhan Dikmen Furkan Hamza Harputlugil 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期716-721,共6页
The undrained shear strength(s_u) of fine-grained soils that can be measured in situ and in laboratory is one of the key geotechnical parameters.The unconfined compression test(UCT) is widely used in laboratory to mea... The undrained shear strength(s_u) of fine-grained soils that can be measured in situ and in laboratory is one of the key geotechnical parameters.The unconfined compression test(UCT) is widely used in laboratory to measure this parameter due to its simplicity;however,it is severely affected by sample disturbance.The vane shear test(VST) technique that is less sensitive to sample disturbance involves a correction factor against the soil plasticity,commonly known as the Bjerrum's correction factor,μ.This study aims to reevaluate the Bjerrum's correction factor in consideration of a different approach and a relatively new method of testing.Atterberg limits test,miniature VST,and reverse extrusion test(RET)were conducted on 120 remolded samples.The effect of soil plasticity on undrained shear strength was examined using the liquidity index instead of Bjerrum's correction factor.In comparison with the result obatined using the Bjerrum's correction factor,the lindrained shear strength was better represented when s_u values were correlated with the liquidity index.The results were validated by the RET,which was proven to take into account soil plasticity with a reliable degree of accuracy.This study also shows that the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils. 展开更多
关键词 SOIL plasticityundrained shear strengthBjerrum's correction factorVane shear TEST (VST)Reverse EXTRUSION TEST (RET)
下载PDF
Using Piezocone Dissipation Test to Estimate the Undrained Shear Strength (<i>s<sub>u</sub></i>), <i>N<sub>kt</sub></i>and <i>N<sub>Δu</sub></i>Factors in Cohesive Soils
7
作者 Dante René Bosch Rubén Rafael Sotelo Fernando María Mántaras 《Journal of Geoscience and Environment Protection》 2019年第8期96-104,共9页
The current practice of geotechnical engineering commonly uses a combination of theoretical and empirical correlations to estimate the soil undrained shear strength in clays from the piezocone test. In order to comple... The current practice of geotechnical engineering commonly uses a combination of theoretical and empirical correlations to estimate the soil undrained shear strength in clays from the piezocone test. In order to complement the use of such correlations, the application of a method to estimate the soil undrained shear strength, using measures of the excess pore pressure in dissipation tests of piezocone is presented. In cohesive soils, excess pore pressure and undrained shear strength are dependent on the same variables (stress state, stress history, soil stiffness), which allows them to be related by the theoretical cavity expansion-critical state framework. This paper mentions the mathematical formulation that supports the theoretical framework used, its relationship with the Nkt and NΔu factors and their estimation in a case studied. The results obtained are consistent within the dispersion found in the international literature and encourage the use of the method in engineering practice. 展开更多
关键词 CPTu PIEZOCONE Overconsolidation Ratio undrained shear strength DISSIPATION TEST
下载PDF
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion
8
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure shear strength
下载PDF
Undrained vane shear strength of sand-foam mixtures subjected to different shear rates 被引量:2
9
作者 Jiazheng Zhong Shuying Wang Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1591-1602,共12页
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv... The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice. 展开更多
关键词 Sand-foam mixture shear rate Peak and residual strengths Effective stress Effective internal friction angle
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
10
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
A consecutive joint shear strength model considering the 3D roughness of real contact joint surface
11
作者 Liren Ban Zhigang Tao +1 位作者 Weisheng Du Yuhang Hou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期617-624,共8页
A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation ... A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation of the maximum possible dilation angle is the degradation of the 3D average equivalent dip angle of the actual contact joint asperities.Firstly,models for calculating the maximum possible dilation angle at the initial and residual shear stress stages are proposed by analyzing the 3D joint morphology characteristics of the corresponding shear stages.Secondly,the variation law of the maximum possible dilation angle is quantified by studying the degradation law of the joint micro convex body.Based on the variation law of the maximum possible dilation angle,the maximum possible shear strength model is proposed.Furthermore,a method to calculate the shear stiffness degradation in the plastic stage is proposed.According to the maximum possible shear strength of rock joints,the shear stress-shear displacement prediction model of rock joints is obtained.The new model reveals that there is a close relationship between joint shear strength and actual contact joint roughness,and the degradation of shear strength after the peak is due to the degradation of actual contact joint roughness. 展开更多
关键词 shear strength Actual contact area 3D roughness shear test
下载PDF
A method to predict the peak shear strength of rock joints based on machine learning
12
作者 BAN Li-ren ZHU Chun +3 位作者 HOU Yu-hang DU Wei-sheng QI Cheng-zhi LU Chun-sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3718-3731,共14页
In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanica... In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanical property of joints,has been a focal point in the research field.There are limitations in the current peak shear strength(PSS)prediction models for jointed rock:(i)the models do not comprehensively consider various influencing factors,and a PSS prediction model covering seven factors has not been established,including the sampling interval of the joints,the surface roughness of the joints,the normal stress,the basic friction angle,the uniaxial tensile strength,the uniaxial compressive strength,and the joint size for coupled joints;(ii)the datasets used to train the models are relatively limited;and(iii)there is a controversy regarding whether compressive or tensile strength should be used as the strength term among the influencing factors.To overcome these limitations,we developed four machine learning models covering these seven influencing factors,three relying on Support Vector Regression(SVR)with different kernel functions(linear,polynomial,and Radial Basis Function(RBF))and one using deep learning(DL).Based on these seven influencing factors,we compiled a dataset comprising the outcomes of 493 published direct shear tests for the training and validation of these four models.We compared the prediction performance of these four machine learning models with Tang’s and Tatone’s models.The prediction errors of Tang’s and Tatone’s models are 21.8%and 17.7%,respectively,while SVR_linear is at 16.6%,SVR_poly is at 14.0%,and SVR_RBF is at 12.1%.DL outperforms the two existing models with only an 8.5%error.Additionally,we performed shear tests on granite joints to validate the predictive capability of the DL-based model.With the DL approach,the results suggest that uniaxial tensile strength is recommended as the material strength term in the PSS model for more reliable outcomes. 展开更多
关键词 Peak shear strength Rock joints Prediction model Machine learning Deep learning
原文传递
Hydraulic path dependence of shear strength for compacted loess
13
作者 Pan Chen Shengao Jia +3 位作者 Xiaoqi Wei Pingping Sun Panpan Yi Changfu Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1872-1882,共11页
Shear strength is an essential geotechnical parameter for assessing the landslide potential of loess slopes under rainfall infiltration and farm irrigation conditions on the loess plateau.However,the hydraulic path de... Shear strength is an essential geotechnical parameter for assessing the landslide potential of loess slopes under rainfall infiltration and farm irrigation conditions on the loess plateau.However,the hydraulic path dependence of shear strength for compacted loess under varying rainfall infiltration conditions has not been thoroughly investigated yet.To this end,a series of direct shear tests and nuclear magnetic resonance(NMR)measurements are carried out on compacted loess.The shear strength tests were continuously implemented on loess specimens under scanning wetting paths besides initial drying paths.The experimental data quantitatively verify the significant effect of hydraulic paths applied to specimens on shear strength of compacted loess.The unique failure envelope of shear strength of loess is identified under the effective stress framework based on intergranular stress,which verifies that the effective stress framework can consider the effect of hydraulic paths on shear strength.Based on the effective stress,a shear strength formula is proposed to characterize shear strengths under varying hydraulic paths,in which the parameters from the soil-water retention curve and shear strength at saturated state are simply required.The proposed shear strength formula can properly predict the measured shear strength data of compacted loess experiencing three hydraulic paths.Furthermore,the distribution curves of transverse relaxation time for pore water in soil under varying hydraulic paths are simultaneously measured using the NMR method.The physical mechanism for the difference in shear strength of loess subjected to different hydraulic paths can be uncovered based on soil-water evolutions in pores in microscale. 展开更多
关键词 shear strength LOESS Hydraulic hysteresis Effective stress Nuclear magnetic resonance(NMR)
下载PDF
SPT based determination of undrained shear strength:Regression models and machine learning 被引量:1
14
作者 Walid Khalid MBARAK Esma Nur CINICIOGLU Ozer CINICIOGLU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第1期185-198,共14页
The purpose of this study is the accurate prediction of undrained shear strength using Standard Penetration Test results and soil consistency indices,such as water content and Atterberg limits.With this study,along wi... The purpose of this study is the accurate prediction of undrained shear strength using Standard Penetration Test results and soil consistency indices,such as water content and Atterberg limits.With this study,along with the conventional methods of simple and multiple linear regression models,three machine learning algorithms,random forest,gradient boosting and stacked models,are developed for prediction of undrained shear strength.These models are employed on a relatively large data set from different projects around Turkey covering 230 observations.As an improvement over the available studies in literature,this study utilizes correct statistical analyses techniques on a relatively large database,such as using a train/test split on the data set to avoid overfitting of the developed models.Furthermore,the validity and consistency of the prediction results are ensured with the correct use of statistical measures like p-value and cross-validation which were missing in previous studies.To compare the performances of the models developed in this study with the prior ones existing in literature,all models were applied on the test data set and their performances are evaluated in terms of the resulting root mean squared error(RMSE)values and coefficient of determination(R^2).Accordingly,the models developed in this study demonstrate superior prediction capabilities compared to all of the prior studies.Moreover,to facilitate the use of machine learning algorithms for prediction purposes,entire source code prepared for this study and the collected data set are provided as supplements of this study. 展开更多
关键词 undrained shear strength linear regression random forest GRADIENT BOOSTING machine learning standard PENETRATION test
原文传递
The Characteristics of Glued Tensile Shear Strength Constituted of Wood Cut by CO_(2) Laser
15
作者 Fatemeh Rezaei Milan Gaff +10 位作者 Róbert Nemeth Jerzy Smardzewski Peter Niemz Haitao Li Anil Kumar Sethy Luigi Todaro Gourav Kamboj Sumanta Das Roberto Corleto Gianluca Ditommaso Miklós Bak 《Journal of Renewable Materials》 EI 2023年第8期3277-3296,共20页
The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified ch... The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified che-mical component of the laser-cut surface,and the strength and adhesive penetration near the bondline.Beech-wood is cut by the laser with varying processing parameters,cutting speeds,gas pressures,and focal point positions.The laser-cut samples were divided into two groups,sanded and non-sanded samples.Polyvinyl acetate adhesive(PVAc)was used to bond the groups of laser-cut samples.After assembly with cold pressing,the tensile shear test was carried out.Numerical modelling was carried out to determine the partial elongation and shear strain of the glue line.Based on this,the shear modulus and linear elasticity of the glue line were estimated.Scan-ning electron microscopy was used to assess the adhesive penetration into the porosity structure of the laser-cut samples,and the depth of the heat-affected zone.The laser-cut surface was analysed by Fourier transform infrared spectroscopy.The wetting properties of the laser-cut surface were investigated by using a contact angle goni-ometer.The numerical model of the strain-stress curve confirmed the experimental model.The highest modulus of the linear elasticity of the glue in the numerical calculation belongs to the joint containing laser-cut samples at a gas pressure of 21(bar).The penetration depth of PVAc adhesive into the porosity structure of the laser-cut sam-ples was similar to that of sawn samples.The deepest heat-affected zone in the laser-cut samples was 150µm.A PVAc drop disappeared immediately on the laser-cut surface without sanding,but gradually on the sanded surface.In contrast,the drop on the sawn surface remained with an angle of 32°–48°.The degradation of hemi-cellulose and lignin was proven by the lower intensity of the C=O and C-O Bonds,compared to the sawn surface. 展开更多
关键词 CO_(2)laser cutting speed focal point position gas pressure glued tensile shear strength
下载PDF
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:2
16
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer Centrifuge experiment Deep-sea surface soil undrained shear strength Penetration resistance factor Water cavity
下载PDF
Influences of soil moisture and salt content on loess shear strength in the Xining Basin, northeastern Qinghai-Tibet Plateau 被引量:10
17
作者 FU Jiang-tao HU Xia-song +5 位作者 LI Xi-lai YU Dong-mei LIU Ya-bin YANG You-Qing QI Zhao-xin LI Shu-xia 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1184-1197,共14页
Moisture and salt content of soil are the two predominant factors influencing its shear strength. This study aims to investigate the effects of these two factors on shear strength behavior of loess in the Xining Basin... Moisture and salt content of soil are the two predominant factors influencing its shear strength. This study aims to investigate the effects of these two factors on shear strength behavior of loess in the Xining Basin of Northeast Qinghai-Tibet Plateau, where such geological hazards as soil erosion, landslides collapse and debris flows are widespread due to the highly erodible loess. Salinized loess soil collected from the test site was desalinized through salt-leaching in the laboratory. The desalinized and oven-dried loess samples were also artificially moisturized and salinized in order to examine how soil salinity affects its shear strength at different moisture levels. Soil samples prepared in different ways(moisturizing, salt-leaching, and salinized) were measured to determine soil cohesion and internal friction angle. The results show that salt-leaching up to 18 rounds almost completely removed the salt content and considerably changed the physical components of loess, but the soil type remained unchanged. As salt content increases from 0.00% to 12.00%, both the cohesion and internal friction angle exhibit an initial decrease and then increase with salt content. As moisture content is 12.00%, the salt content threshold value for both cohesion and internal friction angle is identified as 3.00%. As the moisture content rises to 16.0% and 20.00%, the salt content threshold value for cohesion is still 6.00%, but 3.00% for internal friction angle. At these thresholds soil shear strength is the lowest, below which it is inversely related to soil salinity. Beyond the thresholds, however, the relationship is positive. Dissimilar to salinity, soil moisture content exerts an adverse effect on shear strength of loess. The findings of this study can provide a valuable guidance on stabilizing the engineering properties of salinized loess to prevent slope failures during heavy rainfall events. 展开更多
关键词 Salinized LOESS Desalinized LOESS Salt-leaching shear strength indices Moisture CONTENT Salt CONTENT
原文传递
Shear strength behavior of geotextile/geomembrane interfaces 被引量:7
18
作者 Belén M.Bacas Jorge Caizal Heinz Konietzky 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期638-645,共8页
This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces,the geotextile/geomembrane,typically used for lined containment facilities such as landfills.A large direct shear... This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces,the geotextile/geomembrane,typically used for lined containment facilities such as landfills.A large direct shear machine is used to carry out 90 geosynthetic interface tests.The test results show a strain softening behavior with a very small dilatancy(<0.5 mm) and nonlinear failure envelopes at a normal stress range of 25-450 kPa.The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail.This study has generated several practical recommendations to help professionals to choose what materials are more adequate.From the three geotextiles tested,the thermally bonded monofilament exhibits the best interface shear strength under high normal stress.For low normal stress,however,needle-punched monofilaments are recommended.For the regular textured geomembranes tested,the space between the asperities is an important factor.The closer these asperities are,the better the result achieves.For the irregular textured geomembranes tested,the nonwoven geotextiles made of monofilaments produce the largest interface shear strength. 展开更多
关键词 GEOTEXTILES GEOMEMBRANES LANDFILLS Fiber length ROUGHNESS shear strength Friction angle
下载PDF
Effect of granulated rubber on shear strength of fine-grained sand 被引量:6
19
作者 Seyed Mahmoud Anvari Issa Shooshpasha Saman Soleimani Kutanaei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期936-944,共9页
Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand... Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content. 展开更多
关键词 Granulated RUBBER FINE-GRAINED SAND RELATIVE density shear strength
下载PDF
Influence of holding time on microstructure and shear strength of Mg alloy/steel joint diffusion bonded with Zn-5Al interlayer 被引量:5
20
作者 赵丽敏 于海 冉伟锋 《China Welding》 EI CAS 2017年第1期1-8,共8页
The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded... The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded joints were characterized by scanning electron microscopy( SEM),energy dispersive spectrometer( EDS) and X-ray diffraction( XRD)methods. The shear strength of Mg alloy/steel joints was measured by tensile tester. It was found that the microstructure of bonded joints evolved dramatically along with the prolongation of holding time. Under the holding time of 3 s,the main part of joint was composed of MgZn_2 phase and dispersed Al-rich solid solution particles. When increased the holding time more than 60 s,the excessive solution of AZ31B into the interfacial reaction area led to the formation of coarse phase and eutectic microstructure,and also the complex Fe-Al and Mg-Al-Zn IMCs at transition layer closed to Q235 steel side. According to the tensile testing characterizations,the joints obtained under holding time of 3 s exhibited the best shear strength of 84 MPa,and the fracture occurred at the intermediary part of joint where the flexible Al-rich solid solution particles could help to impede the microcrack propagations. With prolonging the holding time to 600 s,the shear strength of joints was deteriorated enormously and the fracture position was shifted to the transition layer part closed to Q235 steel. 展开更多
关键词 diffusion BONDING MICROSTRUCTURE shear strength transition layer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部