期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interpolation Technique for the Underwater DEM Generated by an Unmanned Surface Vessel
1
作者 Shiwei Qin Zili Dai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3157-3172,共16页
High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Sh... High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata. 展开更多
关键词 Underwater DEM interpolation technique unmanned surface vessel surface roughness
下载PDF
Comprehensive Marine Observing Experiment Based on High-Altitude Large Unmanned Aerial Vehicle(South China Sea Experiment2020 of the “Petrel Project”) 被引量:4
2
作者 Xuefen ZHANG Liangxu LI +11 位作者 Rongkang YANG Ran GUO Xia SUN Jianping LUO Hongbin CHEN Daxin LIU Kebing TANG Wenwu PENG Xiaodong HAN Qiyun GUO Xiaoxia LI Xikun FEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期531-537,共7页
In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yi... In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models. 展开更多
关键词 high-altitude large UAV MARINE typhoon unmanned surface vessel horizontal drifting radiosonde drifting buoy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部