期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress
1
作者 Lei Wang Sidong Shen +2 位作者 Tianyi Li Minjie Wen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1603-1614,共12页
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di... In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress. 展开更多
关键词 Semi-analytical solutions Two-dimensional(2D)plane strain CONSOLIDATION unsaturated soils Depth-dependent stress Laplace transform
下载PDF
Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior 被引量:4
2
作者 马田田 韦昌富 +1 位作者 陈盼 魏厚振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1129-1154,共26页
A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYS... A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYSAC2).The obtained results are compared with experimental results,showing that the proposed constitutive model can simulate the main mechanical and hydraulic behavior of unsaturated soils in a unified framework.The non-linearity of the soil-water characteristic relation is treated in a similar way of elastoplasticity.Two constitutive relations are integrated by an implicit return-mapping scheme similar to that developed for saturated soils.A consistent tangential modulus is derived to preserve the asymptotic rate of the quadratic convergence of Newton's iteration.Combined with the integration of the constitutive model,a complete finite-element formulation of coupling hydro-mechanical problems for unsaturated soils is presented.A number of practical problems with different given initial and boundary conditions are analyzed to illustrate the performance and capabilities of the finite-element model. 展开更多
关键词 unsaturated soil capillary hysteresis elastoplastic coupling constitutive model stress integration finite-element method
下载PDF
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:3
3
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
下载PDF
Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I 被引量:1
4
作者 秦冰 陈正汉 +3 位作者 方振东 孙树国 方祥位 王驹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1561-1576,共16页
This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures.Unsaturated soil is considered as a mixture composed of soil skeleton,liquid water,vapor,dry air,and ... This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures.Unsaturated soil is considered as a mixture composed of soil skeleton,liquid water,vapor,dry air,and dissolved air.In addition to the mass and momentum conservation equations of each component and the energy conservation equation of the mixture,the system is closed using other 37 constitutive (or restriction) equations.As the change in water chemical potential is identical to the change in vapor chemical potential,a thermodynamic restriction relationship for the phase transition between pore water and pore vapor is formulated,in which the impact of the change in gas pressure on the phase transition is taken into account.Six final governing equations are given in incremental form in terms of six primary variables,i.e.,three displacement components of soil skeleton,water pressure,gas pressure,and temperature.The processes involved in the coupled model include thermal expansions of soil skeleton and soil particle,Soret effect,phase transition between water and vapor,air dissolution in pore water,and deformation of soil skeleton. 展开更多
关键词 unsaturated soil thermo-hydro-mechanical TEMPERATURE theory of mixtures
下载PDF
Cylindrical cavity expansion responses in anisotropic unsaturated soils under plane stress condition
5
作者 Haohua Chen Xiaolin Weng +1 位作者 Lele Hou Dean Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1989-2002,共14页
In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves re... In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves related to porosity ratio was employed to characterize the coupled hydromechanical behavior of unsaturated anisotropic soil.Based on the plane stress condition,the problem of the cylindrical cavity expansion in unsaturated anisotropic soils was transformed into first-order differential equations using the Lagrangian description.The equations were solved as an initial value problem using the Runge-Kutta algorithm,which can reflect the soil-water retention behavior during cavity expansion.Parametric analyses were conducted to investigate the influences of overconsolidation ratio(OCR),suction,and degree of saturation on the expansion responses of a cylindrical cavity in unsaturated anisotropic soil under plane stress condition.The results show that the above factors have obvious influences on the cavity responses,and the plane strain solution tends to overestimate expansion pressure and degree of saturation but underestimates suction around the cavity compared to the proposed plane stress solution.The theoretical model proposed in this paper provides a reasonable and effective method for simulating pile installation and soil pressure gauge tests near the ground surface of the unsaturated soils. 展开更多
关键词 Cylindrical cavity Anisotropic unsaturated soil Plane stress Hydromechanical behavior
下载PDF
Seasonal influence on cone penetration test: An unsaturated soil site example
6
作者 Heraldo Luiz Giacheti Renan Cravera Bezerra +1 位作者 Breno Padovezi Rocha Roger Augusto Rodrigues 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2019年第2期361-368,共8页
Interpretation of electric cone penetration test(CPT) based pore water pressure measurement(CPTu) is well established for soils with behavior that follows classical soil mechanics. The literature on the interpretation... Interpretation of electric cone penetration test(CPT) based pore water pressure measurement(CPTu) is well established for soils with behavior that follows classical soil mechanics. The literature on the interpretation of these tests performed on unsaturated tropical soils is limited, and little is known about the influence of soil suction on in situ test data. In this context, the CPT data are presented and discussed to illustrate the seasonal variability in an unsaturated tropical soil site. The test data show that soil suction significantly influenced CPT data up to a depth of 4 m at the study site. It shows the importance of considering seasonal variability in unsaturated soil sites caused by soil suction, which was related to water content through a soil-water retention curve(SWRC). It is also important to consider this aspect in the interpretation of CPT data from these soils. 展开更多
关键词 Site investigation In situ testing Cone penetration test (CPT) unsaturated soil SUCTION VARIABILITY
下载PDF
Thermal-water-salt coupling process of unsaturated saline soil under unidirectional freezing 被引量:1
7
作者 LUO Chong-liang YU Yun-yan +3 位作者 ZHANG Jing TAO Jing-yan OU Qing-jie CUI Wen-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第2期557-569,共13页
Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation... Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient. 展开更多
关键词 unsaturated sulfate saline soil Watersalt migration Crystallization latent heat Crystallization impedance Mathematical model
原文传递
Fractional derivative statistical damage model of unsaturated expansive soil based on unified hydraulic effect
8
作者 ZHANG Hua WANG Peng 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2769-2782,共14页
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect... Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator. 展开更多
关键词 unsaturated expansive soil Unified hydraulic effect Shear strength theory Hardening-damage model Fractional derivative
原文传递
Behavior of materials for earth and rockfill dams:Perspective from unsaturated soil mechanics 被引量:3
9
作者 Eduardo E.ALONSO Rafaela CARDOSO 《Frontiers of Structural and Civil Engineering》 SCIE EI 2010年第1期1-39,共39页
The basis of the design of earth and rockfill dams is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life.Combined mechanical and hydraulic conditions must be... The basis of the design of earth and rockfill dams is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life.Combined mechanical and hydraulic conditions must be considered since pore pressures develop during construction,after impoundment and in drawdown.Other instability phenomena caused by transient flow and internal erosion must be considered.The prediction of the hydromechanical behavior of traditional and non-traditional materials used in the construction of dams is therefore fundamental.The materials used for dam’s construction cover a wide range from clayey materials to rockfill.In a broad sense they are compacted materials and therefore unsaturated materials.A summary of the current level of knowledge on the behavior of traditional materials used in the construction of dams is presented in the paper.Regular compacted materials(with a significant clay fraction),rockfill and compacted soft rocks are studied with more detail.The latter are non-traditional materials.They are analysed because their use,as well as the use of mixtures of soil and rock,is becoming more necessary for sustainability reasons. 展开更多
关键词 DAMS unsaturated soil mechanics SUCTION ROCKFILL clayey soil MIXTURE
原文传递
Characteristics of unsaturated soil slope covered with capillary barrier system and deep-rooted grass under different rainfall patterns Check for updates 被引量:1
10
作者 Yangyang Li Alfrendo Satyanaga Harianto Rahardjo 《International Soil and Water Conservation Research》 SCIE CSCD 2021年第3期405-418,共14页
Rainfall-induced slope failures commonly occur in residual soil slopes.Slope failures are triggered by the reduction in soil strength.This is attributed to the decrease in soil suction due to rainwater infiltration.Sl... Rainfall-induced slope failures commonly occur in residual soil slopes.Slope failures are triggered by the reduction in soil strength.This is attributed to the decrease in soil suction due to rainwater infiltration.Slope covers like capillary barrier system and vegetative cover are effective methods that can be used to prevent rainfall-induced slope failures.The capillary barrier system is able to limit the rainwater infiltration,and vegetation can contribute to the increase in soil strength.Vetiver grass is widely planted in tropical and subtropical areas of the world for soil and water conservation.This study investigates the characteristics of unsaturated soil slope covered with capillary barrier system and Vetiver grass in comparison with the original slope through numerical analyses and field measurements.The analyses were carried out under the advanced,normal,and delayed rainfall patterns.The results of the analyses indicated that the capillary barrier system played a more significant role than the Vetiver grass in maintaining slope stability,although both the capillary barrier system and Vetiver grass contributed to the slope stability.In addition,both numerical analyses and field measurements showed that under the delayed and normal rainfall patterns,when antecedent rainwater infiltration could increase the soil moisture,the capillary barrier system performed much better compared to Vetiver grass in maintaining soil matric suctions and slope stability. 展开更多
关键词 unsaturated Slope stability unsaturated soil CBS Vetiver grass
原文传递
Determination of effective stress parameter of unsaturated soils:A Gaussian process regression approach 被引量:1
11
作者 Pijush Samui Jagan J 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第2期133-136,共4页
This article examines the capability of Gaussian process regression(GPR)for prediction of effective stress parameter(χ)of unsaturated soil.GPR method proceeds by parameterising a covariance function,and then infers t... This article examines the capability of Gaussian process regression(GPR)for prediction of effective stress parameter(χ)of unsaturated soil.GPR method proceeds by parameterising a covariance function,and then infers the parameters given the data set.Input variables of GPR are net confining pressure(σ_(3)),saturated volumetric water content(θ_(s)),residual water content(θ_(r)),bubbling pressure(h_(b)),suction(s)and fitting parameter(l).A comparative study has been carried out between the developed GPR and Artificial Neural Network(ANN)models.A sensitivity analysis has been done to determine the effect of each input parameter onχ.The developed GPR gives the variance of predictedχ.The results show that the developed GPR is reliable model for prediction ofχof unsaturated soil. 展开更多
关键词 unsaturated soil effective stress parameter Gaussian process regression(GPR) artificial neural network(ANN) variance
原文传递
Stability analysis of layered slopes in unsaturated soils
12
作者 Guangyu DAI Fei ZHANG Yuke WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第3期378-387,共10页
This study presents stability analyses of layered soil slopes in unsaturated conditions and uses a limit equilibrium method to determine the factor of safety involving suction stress of unsaturated soil.One-dimensiona... This study presents stability analyses of layered soil slopes in unsaturated conditions and uses a limit equilibrium method to determine the factor of safety involving suction stress of unsaturated soil.One-dimensional steady infiltration and evaporation conditions are considered in the stability analyses.An example of a two-layered slope in clay and silt is selected to verify the used method by comparing with the results of other methods.Parametric analyses are conducted to explore the influences of the matric suction on the stability of layered soil slopes.The obtained results show that larger suction stress provided in unsaturated clay dominates the stability of the layered slopes.Therefore,the location and thickness of the clay layer have significant influences on slope stability.As the water level decreases,the factor of safety reduces and then increases gradually in most cases.Infiltration/evaporation can obviously affect the stability of unsaturated layered slopes,but their influences depend on the soil property and thickness of the lower soil layer. 展开更多
关键词 slope stability suction stress unsaturated soil layered slope limit equilibrium
原文传递
Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils
13
作者 Zi Ying Nadia Benahmed +1 位作者 Yu-Jun Cui Myriam Duc 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1946-1955,共10页
Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extra... Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement. 展开更多
关键词 unsaturated soils Mixed salt solutions Osmotic suction Electrical conductivity(EC)
下载PDF
Thermal-hydro-mechanical coupled analysis of unsaturated frostsusceptible soils
14
作者 YuWei Wu Tatsuya Ishikawa 《Research in Cold and Arid Regions》 CSCD 2022年第4期223-234,共12页
Damage caused by frost heave leads to costly maintenance in cold regions, like Hokkaido, Japan. Therefore, thestudy of the frost mechanism with experimental and numerical methods has been of great interest. Numerousmo... Damage caused by frost heave leads to costly maintenance in cold regions, like Hokkaido, Japan. Therefore, thestudy of the frost mechanism with experimental and numerical methods has been of great interest. Numerousmodels have been developed to describe the freezing process of saturated soil, which differs from the partiallysaturated conditions in the field. In fact, most subsurface soils are unsaturated. The freezing process of partiallysaturated soils is more complex than saturated soils, as the governing equations show strongly nonlinear characteristics. This study proposes a thermo-hydro-mechanical coupled model considering the heat transfer, waterinfiltration, and deformation of partially saturated soil to reproduce the freezing process of partially saturatedfrost susceptible soils distributed in Hokkaido. This model better considers the water-ice phase change and soilfreezing characteristic curve (SFCC) during freezing under field conditions. The results from the multiphysicssimulations agree well with the frost heave and water migration data from frost heave tests of Touryo soil andFujinomori soil. In addition, this study discussed the influence of the various factors on frost heave amount,including temperature gradients, overburden pressures, water supply conditions, cooling rates, and initial saturation. The simulation results indicate that the frost heave ratio is proportional to the initial degree of saturationand is inversely proportional to the cooling rate and overburden pressure.Moreover, simulation under the open system generates much more frost heave than under the closed system.Finally, the main features of the proposed model are revealed by simulating a closed-system frost heave test. Thesimulation results indicate that the proposed model adequately captures the coupling characteristics of water andice redistribution, temperature development, hydraulic conductivity, and suction in the freezing process. Togetherwith the decreased hydraulic conductivity, the increased suction controls the water flow in the freezing zone. Theinflow water driven by cryogenic suction gradient feeds the ice formation, leads to a rapid increase in total watercontent, expanding the voids that exceed the initial porosity and contributing to the frost heave. 展开更多
关键词 Frost heave unsaturated soil Thermal-hydro-mechanical(THM)coupled model Finite element method(FEM)
下载PDF
Unsaturated flow conditioned on 3D images of soil moisture
15
《Global Geology》 1998年第1期80-80,共1页
关键词 FLOW soil unsaturated flow conditioned on 3D images of soil moisture
下载PDF
An analytical model for evaluating the dynamic response of a tunnel embedded in layered foundation soil with different saturations 被引量:1
16
作者 Di Honggui Guo Huiji +3 位作者 Zhou Shunhua Wang Binglong He Chao Zhang Xiaohui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期663-681,共19页
This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular ... This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell.The separation of variables method is used to solve the motion equation of the shell,and the wave equation of the soil is solved using the Helmholtz decomposition theorem.A dynamic matrix reflecting the wave vectors of soil layers is established using the transfer matrix method.Based on boundary conditions,the tunnel-soil model is coupled using the transformation method of plane wave functions and cylindrical wave functions.The proposed model is validated by comparison with existing tunnel models,and the effects of saturation and the layered properties of soil on the dynamic response of a layered tunnel-soil system is demonstrated via case studies. 展开更多
关键词 TUNNEL unsaturated soil SATURATION transfer matrix method wave function transformation
下载PDF
A modified soil water content measurement technique using actively heated fiber optic sensor 被引量:1
17
作者 Meng Wang Xu Li +3 位作者 Lihong Chen Senquan Hou Guiyan Wu Zhilin Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期608-619,共12页
Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.... Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement. 展开更多
关键词 Fiber bragg grating Carbon fiber heated sensor unsaturated soil Field monitoring soil water content measurement
下载PDF
Determination of strain-dependent soil water retention characteristics from gradation curve
18
作者 Min Wang GNPande +1 位作者 Stan Pietruszczak Z.X.Zeng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1356-1360,共5页
The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent s... The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent soil water retention curve(SWRC)is likely to be extraordinarily difficult.The first two authors have recently shown that SWRC can be computed from the gradation curve and the calculation result is consistent with the experimental results obtained from pressure plate tests.In this paper,based on a hypothesis related to change in the pore size distribution(POSD)due to volumetric strain of soil skeleton,a method to compute strain-dependent SWRC is presented.It is found that at initial degrees of saturation higher than 0.8,the influence of volumetric strain may be marginal whilst at initial degrees of saturation lower than 0.8,its influence is likely to be substantial.In all cases,the gradation curve of the soil affects the SWRC. 展开更多
关键词 soil water retention curve(SWRC) Gradation curve Pore size distribution(POSD) unsaturated soil
下载PDF
Hydromechanical Behavior of Low-Swelling Soils Compacted at Low Water Content: Laboratory Study
19
作者 Soumaïla Gandema Marcel B. Kebré Bétaboalé Naon 《Engineering(科研)》 2020年第11期824-838,共15页
Fine unsaturated soils are used in many applications, particularly in road infrastructure and in construction. These materials undergo deformations according to the stresses to which they are subjected. The purpose of... Fine unsaturated soils are used in many applications, particularly in road infrastructure and in construction. These materials undergo deformations according to the stresses to which they are subjected. The purpose of this paper is to study the influence of hydromechanical stresses on the behavior of low swelling soils compacted at low water content in accordance with the French standard GTR 92 (Guide des Terrassements Routiers). Then, various experimental tests on an oedometer were carried out in the laboratory. Two types of low swelling soil sampled in Nasso on the outskirts of the town of Bobo Dioulasso (Burkina Faso) were used. After shuffling, each sample was moistened to its optimum water content and then compacted to 90% and 95% of its optimum density. Behavior tests show that these soils deform very little when subjected to hydromechanical stresses. However, these deformations are swelling in nature for low mechanical stresses and when the stresses are high, they tend to collapse. When these soils are subjected to a vertical stress of 420 kPa, the primary consolidation time is of the order of one minute for NH<sub>2</sub> (a silty soil) and about ten minutes for NH<sub>3 </sub>(a silty-clayed soil). 展开更多
关键词 unsaturated soil COMPACTED SWELLING Low Water Content WETTING Oedometer Hydro-Mechanical Behavior
下载PDF
A Study on the Shear Strength Characteristic of Unsaturated Red Clay
20
作者 Fei Huang Lichun Zhuo Keneng Zhang 《World Journal of Engineering and Technology》 2022年第4期714-727,共14页
The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In or... The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In order to study the shear strength characteristic of unsaturated red clay in Chenzhou and to explore a shear strength equation that can be easily applied in engineering practice, a series of triaxial tests of saturated and unsaturated red clay samples were performed using the regular triaxial testing apparatus. The testing results show that the peak strength of red clay drops slightly before the moisture content of 30% but decreases sharply after that. The friction angle of red clay under unsaturated state is basically equal to the effective friction angle under saturated state, while the cohesion of unsaturated red clay is far much bigger than that of saturated one, which indicates that the matric suction makes a great contribution to the cohesion. By fitting the testing results with appropriate curves, the relationships between total strength parameters  and  with moisture content were obtained. The total  increases logarithmically before the moisture content of 35% then decreases linearly, while  decreases cubically with increasing moisture content. 展开更多
关键词 unsaturated soils Red Clay Shear Strength Triaxial Tests
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部