This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that th...This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.展开更多
By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and...By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.展开更多
基金jointly supported by the National Science Foundation of China(Grant Nos.91437105,41575041 and 41430533)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA17010105]the National Natural Science Foundation of China [grant numbers 91437105,41430533,and 41575041]the Key Research Program of Frontier Sciences [grant number QYZDY-SSW-DQC018]
文摘By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.