Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC...Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.展开更多
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups...Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.展开更多
In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out...In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.展开更多
A case study is introduced and discussed concerning water dispute of misuse and pollution between up\| and down\|stream parts. The relations between water usage and local industrial structures are analyzed. Results sh...A case study is introduced and discussed concerning water dispute of misuse and pollution between up\| and down\|stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.展开更多
Upstream-downstream relationships of annual streamflow discharges and severity and frequency of stream-flow drought events are critical in understanding how streamflow droughts propagate over time and space. Such info...Upstream-downstream relationships of annual streamflow discharges and severity and frequency of stream-flow drought events are critical in understanding how streamflow droughts propagate over time and space. Such information can be used to resolve water disputes, trigger mitigation strategies, and understand how streamflow changes due to changes in the environment. During drought years, such information is even more critical as water resources are contested. The objective of this research is to study the upstream-downstream relationships of streamflow in Nebraska along four major river systems with diverse hydrologic characteris-tics and human activities: North Platte, Big Blue, Republican, and Niobrara. The relationships among the upstream and downstream stations along the four rivers are investigated by comparing several statistics de-rived from the annual flow discharge and on drought events. Trend analysis and coefficient of variation are applied to annual flow discharge values, and a host of drought-related parameters (e.g., annual maximum drought duration, annual accumulated drought duration, number of drought events) are also computed with respect to five different levels of streamflow drought events: water shortage, mild drought, moderate drought, significant drought, and extreme drought. The paired-t test and ANOVA with MIXED procedure are subse-quently applied to the statistics to observe whether there is a significant difference between upstream and downstream stations along a river. The analysis allows us to characterize the upstream-downstream relation-ships of the four river systems, laying the groundwork for further investigations to identify the reasons for some of the trends and observations. These findings will be essential in water resources management during or prior to hydrological droughts.展开更多
River Tano, located in the Brong Ahafo region of Ghana, has a number of socio-ecological functions. Anthropogenic activities such as farming, washing, and discharge of industrial effluents into the river pose serious ...River Tano, located in the Brong Ahafo region of Ghana, has a number of socio-ecological functions. Anthropogenic activities such as farming, washing, and discharge of industrial effluents into the river pose serious threat to human health. In view of this, water quality campaign was carried out for a period of 12 months by taking samples from the source and the downstream end of the river and analysing for some physico-chemical parameters. The results showed that most of the physico-chemical parameters such as pH, fluoride, nitrite, manganese and temperature were not within the regulatory safe limit. Although the levels of total alkalinity, total iron, ammonia and phosphate kept fluctuating along the course of the river, the difference were not statistically significant apart from fluoride and phosphate which showed significant difference between the upstream and downstream levels. This may be attributed to anthropogenic activities such as farming and washing in the river which implies that human activities have impacted slightly on the water quality. It is recommended that the relevant stakeholders should come together to enforce the environmental laws regarding protection of water bodies and do continuous monitoring for early detection of any change in quality of the River Tano.展开更多
The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electri...The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electricity,lubricants,as well as chemicals and petrochemicals.In the petroleum industry,supply chain management presents several challenges,especially in the logistics sector,that are not found in other industries.In addition,logistical challenges contribute significantly to the cost of oil.Uncertainty regarding customer demand and supply significantly affects SC networks.Hence,SC flexibility can be maintained by addressing uncertainty.On the other hand,in the real world,decision-making challenges are often ambiguous or vague.In some cases,measurements are incorrect owing to measurement errors,instrument faults,etc.,which lead to a pentagonal fuzzy number(PFN)which is the extension of a fuzzy number.Therefore,it is necessary to develop quantitative models to optimize logistics operations and supply chain networks.This study proposed a linear programming model under an uncertain environment.The model minimizes the cost along the refineries,depots,multimode transport and demand nodes.Further developed pentagonal fuzzy optimization,an alternative approach is developed to solve the downstream supply chain using themixed-integer linear programming(MILP)model to obtain a feasible solution to the fuzzy transportation cost problem.In this model,the coefficient of the transportation costs and parameters is assumed to be a pentagonal fuzzy number.Furthermore,defuzzification is performed using an accuracy function.To validate the model and technique and feasibility solution,an illustrative example of the oil and gas SC is considered,providing improved results compared with existing techniques and demonstrating its ability to benefit petroleum companies is the objective of this study.展开更多
As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could h...As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.展开更多
Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly unders...Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).展开更多
基金supported by the National Natural Science Foundation of China(31925029,31471457)the National Key Research and Development Project of China(2021YFD120010105)Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)。
文摘Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金supported by the National Natural Science Foundation of China(Grant No.42304186)China Postdoctoral Science Foundation(2023M743466)+3 种基金the Key Research Program of Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.s IGGCAS-201904,IGGCAS-202102)supported by the International Space Science Institute(ISSI)in Bern and Beijing,through ISSI/ISSI-BJ International Team project“Understanding the Mars Space Environment through Multi-Spacecraft Measurements”(ISSI Team project#23–582ISSIBJ Team project#58).
文摘Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.
基金Guangdong Province Undergraduate Online Open Course Guidance Committee Research Project(2022ZXKC462)Foshan Philosophy and Social Science Planning Project(2024-GJ 037)+4 种基金Provincial First-Class Undergraduate Courses of Guangdong Provincial Education Department(Guangdong Education Gaohan[2022]No.10)Innovation Project of Guangdong Graduate Education(2022JGXM129,2022JGXM128,2023ANLK-080)Foshan University Curriculum Ideological and Political Teaching Reform and Practice Demonstration Project in 2023Quality Engineering Project of Foshan University in 2023Collaborative Education Project of the Ministry of Education in 2023(230703232312141)。
文摘In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.
文摘A case study is introduced and discussed concerning water dispute of misuse and pollution between up\| and down\|stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.
文摘Upstream-downstream relationships of annual streamflow discharges and severity and frequency of stream-flow drought events are critical in understanding how streamflow droughts propagate over time and space. Such information can be used to resolve water disputes, trigger mitigation strategies, and understand how streamflow changes due to changes in the environment. During drought years, such information is even more critical as water resources are contested. The objective of this research is to study the upstream-downstream relationships of streamflow in Nebraska along four major river systems with diverse hydrologic characteris-tics and human activities: North Platte, Big Blue, Republican, and Niobrara. The relationships among the upstream and downstream stations along the four rivers are investigated by comparing several statistics de-rived from the annual flow discharge and on drought events. Trend analysis and coefficient of variation are applied to annual flow discharge values, and a host of drought-related parameters (e.g., annual maximum drought duration, annual accumulated drought duration, number of drought events) are also computed with respect to five different levels of streamflow drought events: water shortage, mild drought, moderate drought, significant drought, and extreme drought. The paired-t test and ANOVA with MIXED procedure are subse-quently applied to the statistics to observe whether there is a significant difference between upstream and downstream stations along a river. The analysis allows us to characterize the upstream-downstream relation-ships of the four river systems, laying the groundwork for further investigations to identify the reasons for some of the trends and observations. These findings will be essential in water resources management during or prior to hydrological droughts.
文摘River Tano, located in the Brong Ahafo region of Ghana, has a number of socio-ecological functions. Anthropogenic activities such as farming, washing, and discharge of industrial effluents into the river pose serious threat to human health. In view of this, water quality campaign was carried out for a period of 12 months by taking samples from the source and the downstream end of the river and analysing for some physico-chemical parameters. The results showed that most of the physico-chemical parameters such as pH, fluoride, nitrite, manganese and temperature were not within the regulatory safe limit. Although the levels of total alkalinity, total iron, ammonia and phosphate kept fluctuating along the course of the river, the difference were not statistically significant apart from fluoride and phosphate which showed significant difference between the upstream and downstream levels. This may be attributed to anthropogenic activities such as farming and washing in the river which implies that human activities have impacted slightly on the water quality. It is recommended that the relevant stakeholders should come together to enforce the environmental laws regarding protection of water bodies and do continuous monitoring for early detection of any change in quality of the River Tano.
文摘The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electricity,lubricants,as well as chemicals and petrochemicals.In the petroleum industry,supply chain management presents several challenges,especially in the logistics sector,that are not found in other industries.In addition,logistical challenges contribute significantly to the cost of oil.Uncertainty regarding customer demand and supply significantly affects SC networks.Hence,SC flexibility can be maintained by addressing uncertainty.On the other hand,in the real world,decision-making challenges are often ambiguous or vague.In some cases,measurements are incorrect owing to measurement errors,instrument faults,etc.,which lead to a pentagonal fuzzy number(PFN)which is the extension of a fuzzy number.Therefore,it is necessary to develop quantitative models to optimize logistics operations and supply chain networks.This study proposed a linear programming model under an uncertain environment.The model minimizes the cost along the refineries,depots,multimode transport and demand nodes.Further developed pentagonal fuzzy optimization,an alternative approach is developed to solve the downstream supply chain using themixed-integer linear programming(MILP)model to obtain a feasible solution to the fuzzy transportation cost problem.In this model,the coefficient of the transportation costs and parameters is assumed to be a pentagonal fuzzy number.Furthermore,defuzzification is performed using an accuracy function.To validate the model and technique and feasibility solution,an illustrative example of the oil and gas SC is considered,providing improved results compared with existing techniques and demonstrating its ability to benefit petroleum companies is the objective of this study.
文摘As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.
文摘Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).