期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
1
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green Project Jinghe River Basin
下载PDF
Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India 被引量:1
2
作者 S.Chrisben Sam Gurugnanam Balasubramanian 《Geodesy and Geodynamics》 CSCD 2023年第2期172-181,共10页
This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques... This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years. 展开更多
关键词 land use/land cover land surface temperature landSAT MODIS and remote sensing
原文传递
Dynamicity of Land Use/Land Cover(LULC):An analysis from peri-urban and rural neighbourhoods of Durgapur Municipal Corporation(DMC)in India
3
作者 Subrata HALDAR Somnath MANDAL +1 位作者 Subhasis BHATTACHARYA Suman PAUL 《Regional Sustainability》 2023年第2期150-172,共23页
The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city an... The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city and fostering the growth of physical infrastructure.Using multi-temporal satellite images,the dynamics of Land Use/Land Cover(LULC)changes,the impact of urban growth on LULC changes,and regional environmental implications were investigated in the peri-urban and rural neighbourhoods of Durgapur Municipal Corporation in India.The study used different case studies to highlight the study area’s heterogeneity,as the phenomenon of change is not consistent.Landsat TM and OLI-TIRS satellite images in 1991,2001,2011,and 2021 were used to analyse the changes in LULC types.We used the relative deviation(RD),annual change intensity(ACI),uniform intensity(UI)to show the dynamicity of LULC types(agriculture land;built-up land;fallow land;vegetated land;mining area;and water bodies)during 1991-2021.This study also applied the Decision-Making Trial and Evaluation Laboratory(DEMATEL)to measure environmental sensitivity zones and find out the causes of LULC changes.According to LULC statistics,agriculture land,built-up land,and mining area increased by 51.7,95.46,and 24.79 km^(2),respectively,from 1991 to 2021.The results also suggested that built-up land and mining area had the greatest land surface temperature(LST),whereas water bodies and vegetated land showed the lowest LST.Moreover,this study looked at the relationships among LST,spectral indices(Normalized Differenced Built-up Index(NDBI),Normalized Difference Vegetation Index(NDVI),and Normalized Difference Water Index(NDWI)),and environmental sensitivity.The results showed that all of the spectral indices have the strongest association with LST,indicating that built-up land had a far stronger influence on the LST.The spectral indices indicated that the decreasing trends of vegetated land and water bodies were 4.26 and 0.43 km^(2)/a,respectively,during 1991-2021.In summary,this study can help the policy-makers to predict the increasing rate of temperature and the causes for the temperature increase with the rapid expansion of built-up land,thus making effective peri-urban planning decisions. 展开更多
关键词 land use/land Cover(LULC) Peri-urban and rural neighbourhoods Normalized Differenced Built-up Index(NDBI) Normalized Difference Vegetation Index(NDVI) Normalized Difference Water Index(NDWI) land surface temperature(LST) Environmental sensitivity
下载PDF
Impacts of Regional-Scale Land Use/Land Cover Change on Diurnal Temperature Range 被引量:5
4
作者 HUA Wen-Jian CHEN Hai-Shan 《Advances in Climate Change Research》 SCIE 2013年第3期166-172,共7页
The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the ot... The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the other with current land use,were conducted.Results show that the impacts of LUCC on diurnal temperature range(DTR)are more significant than on mean surface air temperature.The global average annual DTR change due to LUCC is–0.1℃,which is three times as large as the mean temperature change.LUCC influences regional DTR as simulated by the model.In the mid-latitudes,LUCC leads to a decrease in DTR,which is mainly caused by the reduction in daily maximum temperature.However,there are some diferences in the low latitudes.The reduction in DTR in East Asia is mainly the result of the decrease in daily maximum temperature,while in India,the decrease in DTR is due to the increase in daily minimum temperature.In general,the LUCC significantly controls the DTR change through the changes in canopy evaporation and transpiration. 展开更多
关键词 land use/land COVER CHANGE DIURNAL temperature range climate CHANGE
下载PDF
A Modified Self-adaptive Method for Mapping Annual 30-m Land Use/Land Cover Using Google Earth Engine:A Case Study of Yangtze River Delta 被引量:2
5
作者 QU Le’an LI Manchun +1 位作者 CHEN Zhenjie ZHI Junjun 《Chinese Geographical Science》 SCIE CSCD 2021年第5期782-794,共13页
Annual Land Use/Land Cover(LULC)change information at medium spatial resolution(i.e.,at 30 m)is used in applications ranging from land management to achieving sustainable development goals related to food security.How... Annual Land Use/Land Cover(LULC)change information at medium spatial resolution(i.e.,at 30 m)is used in applications ranging from land management to achieving sustainable development goals related to food security.However,obtaining annual LULC information over large areas and long periods is challenging due to limitations on computational capabilities,training data,and workflow design.Using the Google Earth Engine(GEE),which provides a catalog of multi-source data and a cloud-based environment,we developed a novel methodology to generate a high accuracy 30-m LULC cover map collection of the Yangtze River Delta by integrating free and public LULC products with Landsat imagery.Our major contribution is a hybrid approach that includes three major components:1)a high-quality training dataset derived from multi-source LULC products,filtered by k-means clustering analysis;2)a yearly 39-band stack feature space,utilizing all available Landsat data and DEM data;and 3)a self-adaptive Random Forest(RF)method,introduced for LULC classification.Experimental results show that our proposed workflow achieves an average classification accuracy of 86.33%in the entire Delta.The results demonstrate the great potential of integrating multi-source LULC products for producing LULC maps of increased reliability.In addition,as the proposed workflow is based on open source data and the GEE cloud platform,it can be used anywhere by anyone in the world. 展开更多
关键词 land use/land Cover(LULC) self-adaptive Random Forest(RF) Google Earth Engine(GEE) Yangtze River Delta
下载PDF
Assessment of ecological quality in Northwest China(2000-2020)using the Google Earth Engine platform:Climate factors and land use/land cover contribute to ecological quality 被引量:1
6
作者 WANG Jinjie DING Jianli +2 位作者 GE Xiangyu QIN Shaofeng ZHANG Zhe 《Journal of Arid Land》 SCIE CSCD 2022年第11期1196-1211,共16页
The ecological quality of inland areas is an important aspect of the United Nations Sustainable Development Goals(UN SDGs).The ecological environment of Northwest China is vulnerable to changes in climate and land use... The ecological quality of inland areas is an important aspect of the United Nations Sustainable Development Goals(UN SDGs).The ecological environment of Northwest China is vulnerable to changes in climate and land use/land cover,and the changes in ecological quality in this arid region over the last two decades are not well understood.This makes it more difficult to advance the UN SDGs and develop appropriate measures at the regional level.In this study,we used the Moderate Resolution Imaging Spectroradiometer(MODIS)products to generate remote sensing ecological index(RSEI)on the Google Earth Engine(GEE)platform to examine the relationship between ecological quality and environment in Xinjiang during the last two decades(from 2000 to 2020).We analyzed a 21-year time series of the trends and spatial characteristics of ecological quality.We further assessed the importance of different environmental factors affecting ecological quality through the random forest algorithm using data from statistical yearbooks and land use products.Our results show that the RSEI constructed using the GEE platform can accurately reflect the ecological quality information in Xinjiang because the contribution of the first principal component was higher than 90.00%.The ecological quality in Xinjiang has increased significantly over the last two decades,with the northern part of this region having a better ecological quality than the southern part.The areas with slightly improved ecological quality accounted for 31.26%of the total land area of Xinjiang,whereas only 3.55%of the land area was classified as having a slightly worsen(3.16%)or worsen(0.39%)ecological quality.The vast majority of the deterioration in ecological quality mainly occurred in the barren areas Temperature,precipitation,closed shrublands,grasslands and savannas were the top five environmental factors affecting the changes in RSEI.Environmental factors were allocated different weights for different RSEI categories.In general,the recovery of ecological quality in Xinjiang has been controlled by climate and land use/land cover during the last two decades and policy-driven ecological restoration is therefore crucial.Rapid monitoring of inland ecological quality using the GEE platform is projected to aid in the advancement of the comprehensive assessment of the UN SDGs. 展开更多
关键词 ecological quality land use/land cover spatiotemporal change remote sensing ecological index(RSEI) Google Earth Engine XINJIANG
下载PDF
Land Use/Land Cover and Forest Canopy Density Monitoring of Wafi-Golpu Project Area, Papua New Guinea 被引量:2
7
作者 Slady Akike Sailesh Samanta 《Journal of Geoscience and Environment Protection》 2016年第8期1-14,共14页
This study aims to examine the use of Remote Sensing and Geographical Information System (GIS) technology in land use/land cover mapping to aide sustainable planning and development in the Wafi-Golpu project area. At ... This study aims to examine the use of Remote Sensing and Geographical Information System (GIS) technology in land use/land cover mapping to aide sustainable planning and development in the Wafi-Golpu project area. At the same time, this study examines an existing method of Forest Canopy Density (FCD) model to estimate forest canopy density of the proposed deforestation site, which is known as the Advanced Exploration Feasibility Study Activities (AEFSA) area within the Wafi-Golpu Project site. The FCD model calculates the forest canopy density using the three (3) indices of vegetation, soil and shadow from the Landsat-8 Operational Land Imager (OLI) satellite image of year 2013. In this study an attempt has been made to monitor the forest loss or degradation during deforestation in a natural forest stand of the Wafi-Golpu project area using forest FCD mapping and monitoring model and the findings of the study will assist the project planners and developers with their work on forest rehabilitation and reforestation for the purposes of sustainable forest management. The result of the work shows that a considerable amount of forest loss will be undertaken during the AEFSA deforestation exercise and also the findings show that a reliable land use/land cover map will greatly assist sustainable development in a resource project development period. 展开更多
关键词 Remote Sensing GIS FCD Model land use/land Cover Forest land Management
下载PDF
An Appraisal of Land Use/Land Cover Change Scenario of Tummalapalle, Cuddapah Region, India—A Remote Sensing and GIS Perspective 被引量:1
8
作者 Yenamala Sreedhar Arveti Nagaraju Gurram Murali Krishna 《Advances in Remote Sensing》 2016年第4期232-245,共14页
The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it ha... The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it has rich uranium reserves and is experiencing a remarkable expansion in recent times. The land use/land cover change analysis was carried out using IRS P6 LISS-III and LANDSAT-8 OLI multitemporal data pertaining to the years 2006 and 2016. The image classification resulted in five major land use/land cover classes namely built-up, agricultural, forest, wasteland and water bodies. The study noticed that the areas under built-up and agricultural classes are found increased from 0.94 km<sup>2</sup> (0.84%) to 2.75 km<sup>2</sup> (2.44%) and 61.68 km<sup>2</sup> (54.84%) to 63.91 km<sup>2</sup> (56.82%), respectively during 2006-2016. Area under forest, wasteland and water bodies are found decreased considerably from 3.09 km<sup>2</sup> (2.75%) to 0.86 km<sup>2</sup> (0.76%), 43.71 km<sup>2</sup> (38.56%) to 42.60 km<sup>2</sup> (37.88%) and 3.05 km<sup>2</sup> (2.71%) to 2.35 km<sup>2</sup> (2.09%), respectively. The study recommends development of industrial based economy by optimally utilizing the existing land resource (scrub and wasteland classes) and simultaneously extending the agricultural practices to other possible areas to make them more productive. 展开更多
关键词 Remote Sensing and GIS Image Classification land use/land Cover Tummalapalle
下载PDF
Impact of land use/land cover types on surface humidity in northern China in the early 21^(st)century
9
作者 JIN Junfang YIN Shuyan YIN Hanmin 《Journal of Arid Land》 SCIE CSCD 2022年第7期705-718,共14页
In the context of global change,it is essential to promote the rational development and utilization of land resources,improve the quality of regional ecological environment,and promote the harmonious development of hu... In the context of global change,it is essential to promote the rational development and utilization of land resources,improve the quality of regional ecological environment,and promote the harmonious development of human and nature for the regional sustainability.We identified land use/land cover types in northern China from 2001 to 2018 with ENVI images and ArcGIS software.Meteorological data were selected from 292 stations in northern China,the potential evapotranspiration was calculated with the Penman-Monteith formula,and reanalysis humidity and observed humidity data were obtained.The reanalysis minus observation(RMO,i.e.,the difference between reanalysis humidity and observed humidity)can effectively characterize the impact of different land use/land cover types(forestland,grassland,cultivated land,construction land,water body and unused land)on surface humidity in northern China in the early 21^(st) century.The results showed that from 2001 to 2018,the area of forestland expanded(increasing by approximately 1.80×10^(4) km^(2)),while that of unused land reduced(decreasing by approximately 5.15×10^(4) km^(2)),and the regional ecological environment was improved.Consequently,land surface in most areas of northern China tended to be wetter.The contributions of land use/land cover types to surface humidity changes were related to the quality of the regional ecological environment.The contributions of the six land use/land cover types to surface humidity were the highest in northeastern region of northern China,with a better ecological environment,and the lowest in northwestern region,with a fragile ecological environment.Surface humidity was closely related to the variation in regional vegetation coverage;when the regional vegetation coverage with positive(negative)contributions expanded(reduced),the land surface became wetter.The positive contributions of forestland and water body to surface humidity were the greatest.Unused land and construction land were associated with the most serious negative contributions to surface humidity.Affected by the regional distribution pattern of vegetation,surface humidity in different seasons decreased from east to west in northern China.The seasonal variation in surface humidity was closely related to the growth of vegetation:surface humidity was the highest in summer,followed by autumn and spring,and the lowest in winter.According to the results,surface humidity is expected to increase in northeastern region of northern China,decrease in northern region,and likely increase in northwestern region. 展开更多
关键词 surface humidity land use/land cover change reanalysis minus observation Penman-Monteith formula climate change northern China
下载PDF
Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River,China
10
作者 WANG Shanshan ZHOU Kefa +2 位作者 ZUO Qiting WANG Jinlin WANG Wei 《Journal of Arid Land》 SCIE CSCD 2021年第12期1274-1286,共13页
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur... The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region. 展开更多
关键词 land use/land cover change(LUCC) remote sensing land use dynamic index ecological water conveyance Tarim River
下载PDF
Land Use/Land Cover Changes from 1995 to 2017 in Trang Bang, Southern Vietnam
11
作者 Thi Bich Phuong Nguyen Xin Zhang +1 位作者 Wei Wu Hongbin Liu 《Agricultural Sciences》 2019年第3期413-422,共10页
Trang Bang is the largest agricultural production district of TayNinh province, Vietnam that has a great influence on the socio-economic development of the whole province. This study assessed land use - land cover cha... Trang Bang is the largest agricultural production district of TayNinh province, Vietnam that has a great influence on the socio-economic development of the whole province. This study assessed land use - land cover change in Trang Bang district from 1995 to 2017, the results provide scientific evidence for the safe and effective identification of causes and safeguards for mulch. The study was conducted by an expert classification system and the land use/land cover (LULC) was classified into 6 classes: food-crops, fruit-tree, water, built-up, industry and shrub. The result showed that the LULC there decreased between 1995 and 2017. All the two land cover types (food-crops, fruit-tree) decreased 141.2 km2 (41.4%) in 2017 compared with 1995, while the area of industrial and urban land (industry, built-up) increased 70.0 km2 (20.6%). The overall classification accuracies in 1995, 2007, and 2017 were 94.2%, 98.0%, and 96.3% respectively. The overall kappa coefficients for the image classification were 0.90, 0.97, and 0.94 in 1995, 2007, and 2017 respectively. In general, the average classification was above 90%, and this proved that the classification was reliable and acceptable. The result show that the LULC in the study area decreased during 1997-2017 and tended to decrease in recent years. 展开更多
关键词 SAI Gon River Dau Tieng DAM land use/land COVER Trang Bang Classification Remote Sensing
下载PDF
Impact of Urbanisation on Land Use/Land Cover in Puducherry City, India
12
作者 P. Sangaradasse S. Eswari 《Journal of Transportation Technologies》 2019年第3期331-341,共11页
The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted... The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted to built-up area with respect to the demand for housing requirement and to the need for basic infrastructure facilities. The quantum of open space and surface water bodies has also been encroached. There has been a rapid growth of population in Puducherry city from 3.48 million in 1991 to 5.44 million in 2011. Hence the conservation of natural resources becomes one of the major challenges especially in small and medium town. This study was conducted to assess the effect of change on land use in urban agglomeration area of Puducherry city for the duration period from 1997 to 2017. There has been an increase in population in Puducherry city mainly attributed to higher scale of migration from adjoining rural areas and medium town for better education, job opportunities and quality life. Hence, it has been strongly recommended for stringent Development Control Regulations to quantify the urban sprawl and manage the impact of urbanisation of land use/land cover in Puducherry city. 展开更多
关键词 Change of land use/land COVER GIS URBAN Growth SUSTAINABLE BUILT-UP Area
下载PDF
Evaluating Land Use/Land Cover Change and Its Socioeconomic Implications in Agarfa District of Bale Zone, Southeastern Ethiopia
13
作者 Teha Turi Hussien Hayicho Haji Kedir 《Journal of Environmental Protection》 2019年第3期369-388,共20页
A systematic analysis of land use/cover change is so decisive to exactly understand the extent of change and take essential measures to curb down the rate of changes and protect the land cover resources sustainably. T... A systematic analysis of land use/cover change is so decisive to exactly understand the extent of change and take essential measures to curb down the rate of changes and protect the land cover resources sustainably. This land use/land cover change study was conducted in Agarfa district of Bale zone, Oromia Regional State, Southeastern Ethiopia. The objectives of this study were to evaluate the trends, drivers and its socio-economic and environmental implication in study area. A descriptive research method was employed to achieve the intended objectives of the study. In the three years (1976, 1995, and 2014) Landsat Satellite images and socio-economic survey were the main data sources for this study. ERDAS Imagine and Arch-GIS tools were used to classify and generate land use/land cover maps of the study area. Survey questionnaires, key informant interviews, and field observation were employed to obtain information on drivers and its socio-economic and environmental implication in the district. The results show that the land use/land cover of the study area had changed dramatically during the period of 38 years. A rapid loss of forest land and shrub land cover in the landscape took place between 1976 and 2014. Conversely, agriculture and grazing lands were increased by 30% and 42% respectively at the expense of the lost land use/land cover types. Forest land is the most converted cover type during the entire study period. In the 38 years, forest lands diminished by over 65% of the original forest cover that was existed at the base year (1976). Local climate change, declining agricultural productivity and livestock quantity and quality and scarcity of fuel wood and constructional materials were some of the socio-economic and livelihood impacts of land use and land cover change of the study area. Thus, this finding affords information to land users and policy makers on extent of the change and social forces leading to this changes and its subsequent implication on local socio-economic and environmental conditions of the study area. 展开更多
关键词 land use/land COVER CHANGE Evaluation Image Classification Impacts of land use land COVER CHANGE Agarfa DISTRICT GIS and Remote Sensing
下载PDF
Land Use/Land Cover Dynamics and Anthropogenic Driving Factors in Lake Baringo Catchment, Rift Valley, Kenya
14
作者 Molly Ochuka Chris Ikporukpo +1 位作者 Yahaya Mijinyawa George Ogendi 《Natural Resources》 2019年第10期367-389,共23页
Anthropogenic activities have altered land cover in Lake Baringo Catchment contributing to increased erosion and sediment transport into water bodies. The study aims at analyzing the spatial and temporal Land Use and ... Anthropogenic activities have altered land cover in Lake Baringo Catchment contributing to increased erosion and sediment transport into water bodies. The study aims at analyzing the spatial and temporal Land Use and Land Cover Changes (LULCC) changes from 1988 to 2018 and to identify the main driving forces. GIS and Remote Sensing techniques, interviews and field observations were used to analyze the changes and drivers of LULCC from 1988-2018. The satellite imagery was selected from SPOT Image for the years 1988, 1998, 2008 and 2018. Environment for Visualizing Images (ENVI 5.3) was used to perform image analysis and classification. The catchment was classified into six major LULC classes which are water bodies, settlement, rangeland, vegetation, farmland and bare land. The results revealed that, between the years 1988-1998, and 1998-2008, water bodies decreased by 2.77% and 0.76% respectively. However, during the years 2008-2018, water body coverage increased by 1.87%. Forest cover steadily increased from 1988-2018. From 1988-1998, 1998-2008 and 2008-2018, farmland was increased by 21.11%, 3.21% and 1.7% while rangeland decreased continuously between the years 1988-1998, 1998-2008 and 2008-2018 in the order 15.14%, 4.13% and 3.74% respectively. Similarly, bare land also reduced by 1.75%, 1.04% and 0.99% between the years 1988-1998, 1998-2008 and 2008-2018 respectively. The findings attributed LULCC to rapid population growth, deforestation, poor farming practices and overstocking. The results will provide valuable information to the relevant stakeholders to formulate evidence-based land use management strategies in order to achieve ecological integrity. 展开更多
关键词 land use/land COVER CATCHMENT ANTHROPOGENIC FACTORS land Management
下载PDF
Land Use/Land Cover Change Detection in Pokhara Metropolitan, Nepal Using Remote Sensing
15
作者 Sanjeev Kumar Raut Puran Chaudhary Laxmi Thapa 《Journal of Geoscience and Environment Protection》 2020年第8期25-35,共11页
Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usual... Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usually result in the change in the land use/land cover change (LULC). Pokhara Metropolitan is influenced mainly by the combination of various driving forces: geographical location, high rate of population growth, economic opportunity, globalization, tourism activities, and political activities. In addition to this, geographically steep slope, rugged terrain, and fragile geomorphic conditions and the frequency of earthquakes, floods, and landslides make the Pokhara Metropolitan region a disaster-prone area. The increment of the population along with infrastructure development of a given territory leads towards the urbanization. It has been rapidly changing due to urbanization, industrialization and internal migration since the 1970s. The landscapes and ground patterns are frequently changing on time and prone to disaster. Here a study has been carried to study on LULC for the last 18 years (2000-2018). The supervised classification on Landsat Imagery was performed and verified the classification through computing the error matrix. Besides, the water bodies and vegetation area were extracted through the Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDWI) respectively. This research shows that during the last 18 years the agricultural areas diminishing by 15.66% while urban area is increasing by 13.2%. This research is beneficial for preparing the plan and policy in the sustainable development of Pokhara Metropolitan. 展开更多
关键词 Error Matrix land use/land Cover (LULC) Normalized Difference Vegeta-tion Index (NDVI) Normalized Difference Water Index (NDWI) Supervised Image Classification Remote Sensing Urban Growth
下载PDF
Land Use/Land Cover (LULC) Dynamics in a Semi-Arid Watershed in Eastern Rajasthan, India Using Geospatial Tools
16
作者 Munahzah Meraj Akram Javed 《Journal of Geographic Information System》 2022年第6期612-633,共22页
Land use/land cover (LULC) change analysis has become a unique approach in determining the extent of degradation of natural resources within a given period of time. Remote sensing and GIS techniques have proved to be ... Land use/land cover (LULC) change analysis has become a unique approach in determining the extent of degradation of natural resources within a given period of time. Remote sensing and GIS techniques have proved to be efficient tools for mapping and analyzing LULC changes over the last few decades. LULC change analysis has been carried out in Ruparel watershed which is situated in Alwar district, Eastern Rajasthan, India, based on visual image interpretation and change detection analysis of multi-temporal satellite data pertaining to IRS-P6 LISS III data of 2004 (Path-Row 95:52), IRS-P6 LISS III of 2014 (Path-Row 95:52) and IRS-R2A LISS III data of 2021. Visual image interpretation led to the delineation of 13 LULC classes using ArcGIS 10.5 software and include categories such as cultivated land, fallow land dense forest, open forest, degraded forest, open scrub, gullied/ravenous land, settlement/built-up land, River/waterbody, dry waterbody/dry river, plantation, barren/rocky/stony waste, and stone quarry. Results of the analysis depict significant LULC changes that have taken place in the area from 2004 to 2021. LULC categories such as cultivated land and settlement/built-up land have reported major changes in terms of their increase with 56.42 km<sup>2</sup> (4.63%) and 31.9 km<sup>2</sup> (2.63%) respectively primarily because of an increase in population. Likewise, the dense forest has reported a decrease of 33.78 km<sup>2</sup> (2.78%) in its area and has been converted into degraded forest i.e., 32.04 km<sup>2</sup> (2.64%) and open forest 2.85 km<sup>2</sup> (0.24%) due to increased human exploitation of forest resources and mining activities taking place within the forested area. The study area needs the immediate attention of policymakers and stakeholders as the study area being part of the National Capital Region (NCR) will see excessive in-migration of the population in coming years which will further deplete the precious resources in the area. 展开更多
关键词 land use/land Cover Ruparel Watershed Change Detection Analysis Remote Sensing and GIS
下载PDF
Prioritization of Sub-Watersheds in Ruparel Watershed, Rajasthan Based on Morphometric and Land Use/Land Cover Analysis Using Remote Sensing and GIS
17
作者 Munahzah Meraj Akram Javed 《International Journal of Geosciences》 2022年第2期138-154,共17页
Watershed prioritization is considered as the most significant aspect in watershed resource management and development program. The present work attempts to prioritize seventeen sub-watersheds in Ruparel watershed of ... Watershed prioritization is considered as the most significant aspect in watershed resource management and development program. The present work attempts to prioritize seventeen sub-watersheds in Ruparel watershed of Alwar district of Rajasthan, India. For prioritization of sub-watersheds, morphometric and land use/land cover (LULC) analysis were performed using remote sensing and GIS. Base map of the study area has been derived from SOI toposheet on 1:50,000 scale whereas LULC mapping was done using IRS P6 LISS III data. Standard methods for drainage morphometry have been followed for computing morphometric parameters such as linear and shape for seventeen sub-watersheds and allotted ranks based on their relationship with erodibility and a compound value has been calculated for final ranking. Five main LULC categories were computed and were assigned priority ranks and subsequently a compound parameter was determined for final ranking. Integration of both morphometric and LULC results reveal that SBW5, SBW7, SBW12 and SBW16 are the common sub-watersheds that fall under high priority, SBW3 falls under Medium category and SBW11 comes under low priority. The results of the analysis can be used to identify the sub-watersheds which need immediate restoration and will eventually help in watershed resource management for sustainable development. 展开更多
关键词 PRIORITIZATION Watershed Resource Management MORPHOMETRY land use/land Cover Analysis
下载PDF
Inconsistent increasing of climate potential productivity resulting from global warming and land use transitions in the Dongting Lake Basin,from 2000 to 2020
18
作者 WANG Ji-ren ZHENG Jian +2 位作者 SU Jian ZHENG Bo-hong SUN Zhao-qian 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1954-1967,共14页
In the face of global warming and increasing impervious surfaces,quantifying the change of climate potential productivity(CPP)is of great significance for the food production planning.Targeting the Dongting Lake Basin... In the face of global warming and increasing impervious surfaces,quantifying the change of climate potential productivity(CPP)is of great significance for the food production planning.Targeting the Dongting Lake Basin,which is a key area for food production in China,this paper uses meteorological data,as well as Climate Change Initiative Land Cover,and Shuttle Radar Topography Mission digital elevation model to investigate the CPP and its changes from 2000 to 2020.The suitability of land for cultivation(SLC),and the land use/land cover change(LUCC)are also considered.The results showed that the CPP varied from 9,825 to 20,895 kg ha^(-1).Even though the newly added impervious surfaces indirectly resulted in the decrease of CPP by of 9.81×10~8 kg,overall,the CPP increased at an average rate of 83.7 kg ha^(-1)a^(-1).Global warming is the strongest driver behind CPP increase,and CPP has played an important role in the conversions between cultivated land and other land types.The structure of land types tends to be optimized against this challenge. 展开更多
关键词 land cultivation land use/land cover change Climate potential productivity Global warming Dongting Lake Basin
原文传递
Impact of land use/land cover changes on ecosystem services in the Nenjiang River Basin, Northeast China 被引量:5
19
作者 Zhiliang Wang Zongming Wang +2 位作者 Bai Zhang Chunyan Lu Chunying Ren 《Ecological Processes》 SCIE EI 2015年第1期126-137,共12页
Introduction:The Nenjiang River Basin is an important foodstuff base and eco-environmental fragile area in Northeast China.With the rapid rise in human population,human-induced changes in land use/land cover form an i... Introduction:The Nenjiang River Basin is an important foodstuff base and eco-environmental fragile area in Northeast China.With the rapid rise in human population,human-induced changes in land use/land cover form an important component of regional environment and ecosystem service change.At the local and regional level,the ecosystem service concept can act as a decision support tool for a stakeholder to reach sustainable land use management.However,the prevailing ecosystem service evaluation would produce a biggish warp when it is applied to concrete area.So,it is essential to evaluate ecosystem service change according to the local actuality.Method:According to 1:250,000 land use/land cover maps of China and the adjusted equivalent value per unit area of ecosystem services in the Nenjiang River Basin,we evaluated the ecosystem service change of the river basin from 1980 to 2005.Results:The forest and wetland,which are mainly located in the upstream mountainous area of the Nenjiang River Basin,were the two valuable land cover types,accounting for more than three quarters of the total ecosystem service value of the river basin.As for individual ecosystem service,besides the food production,all of the ecosystem service values declined from 1980 to 2005.The total decline of 2.43 billion USD was mainly due to the cultivation of grassland(14.34%of the area in 1980)and wetland(4.62%of the area in 1980)in the downstream plain.Conclusions:Due to the increase in population and the concomitant requirement of grain,the inconsistency between decision-making at the macro-level,and the objective of agricultural production at the micro-level,cultivated land was increased through zealous reclamation of grassland,marginal woodland,and even fallow land.Tremendous land use/land cover changes had caused great damages to the ecological environment such as land degradation and ecosystem service recession.So,the policies of the Grain for Green and Construction of Ecological Province projects should be well-implemented to optimize land use/land cover. 展开更多
关键词 land use/land cover changes Ecosystem services Equivalent value NDVI Nenjiang River Basin
原文传递
An exploratory analysis of usability of Flickr tags for land use/land cover attribution 被引量:4
20
作者 Yingwei Yan Michael Schultz Alexander Zipf 《Geo-Spatial Information Science》 SCIE CSCD 2019年第1期12-22,共11页
This study explored the land use/land cover(LULC)separability by the machine-generated and user-generated Flickr photo tags(i.e.the auto-tags and the user-tags,respectively),based on an authoritative LULC dataset for ... This study explored the land use/land cover(LULC)separability by the machine-generated and user-generated Flickr photo tags(i.e.the auto-tags and the user-tags,respectively),based on an authoritative LULC dataset for San Diego County in the United States.Ten types of LULCs were derived from the authoritative dataset.It was observed that certain types of the reclassified LULCs had abundant tags(e.g.the parks)or a high tag density(e.g.the commercial lands),compared with the less populated ones(e.g.the agricultural lands).Certain highly weighted terms of the tags derived based on a term frequency–inverse document frequency weighting scheme were helpful for identifying specific types of the LULCs,especially for the commercial recreation lands(e.g.the zoos).However,given the 10 sets of tags retrieved from the corresponding 10 types of LULCs,one set of tags(all the tags located at one specific type of the LULCs)could not fully delineate the corresponding LULC due to semantic overlaps,according to a latent semantic analysis. 展开更多
关键词 land use/land cover FLICKR QUANTITATIVE SEMANTICS volunteered geographic information
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部