期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
1
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
原文传递
Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
2
作者 徐龙翔 吕文刚 +7 位作者 胡晨 郭奇勋 尚帅 徐秀兰 于广华 岩雨 王立华 滕蛟 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期199-203,共5页
The valley splitting has been realized in the graphene/Ni heterostructure with the splitting value of 14 meV,and the obtained valley injecting efficiency from the heterostructure into graphene was 6.18%[Phys.Rev.B 921... The valley splitting has been realized in the graphene/Ni heterostructure with the splitting value of 14 meV,and the obtained valley injecting efficiency from the heterostructure into graphene was 6.18%[Phys.Rev.B 92115404(2015)].In this paper,we report a way to improve the valley splitting and the valley injecting efficiency of the graphene/Ni heterostructure.By intercalating an Au monolayer between the graphene and the Ni,the split can be increased up to 50 meV.However,the valley injecting efficiency is not improved because the splitted valley area of graphene moves away from the Fermi level.Then,we mend the deviation by covering a monolayer of Cu on the graphene.As a result,the valley injecting efficiency of the Cu/graphene/Au/Ni heterostructure reaches 10%,which is more than 60%improvement compared to the simple graphene/Ni heterostructure.Then we theoretically design a valley-injection device based on the Cu/graphene/Au/Ni heterostructure and demonstrate that the valley injection can be easily switched solely by changing the magnetization direction of Ni,which can be used to generate and control the valley-polarized current. 展开更多
关键词 valleytronics two-dimensional materials valley-polarized transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部