期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Research on Modulation Signal Denoising Method Based on Improved Variational Mode Decomposition
1
作者 Canyu Mo Qianqiang Lin +1 位作者 Yuanduo Niu Haoran Du 《Journal of Electronic Research and Application》 2024年第1期7-15,共9页
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi... In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance. 展开更多
关键词 Micro-motion modulation signal variational mode decomposition Genetic algorithm Adaptive optimization
下载PDF
Underwater acoustic signal denoising model based on secondary variational mode decomposition
2
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal DENOISING variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
下载PDF
Adaptive Variational Mode Decomposition for Bearing Fault Detection
3
作者 Xing Xing Ming Zhang Wilson Wang 《Journal of Signal and Information Processing》 2023年第2期9-24,共16页
Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable beari... Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable bearing fault detection still remains a challenging task, especially in industrial applications. The objective of this work is to propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis and bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to decompose the target signal and select the most representative intrinsic mode functions (IMFs). 3) The envelope spectrum analysis is performed using the selected IMFs to identify the characteristic features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques. 展开更多
关键词 Bearing Fault Detection Vibration Signal Analysis Intrinsic mode Functions variational mode decomposition
下载PDF
Removal of Ocular Artifacts from Electroencephalo-Graph by Improving Variational Mode Decomposition 被引量:1
4
作者 Miao Shi Chao Wang +3 位作者 Wei Zhao Xinshi Zhang Ye Ye Nenggang Xie 《China Communications》 SCIE CSCD 2022年第2期47-61,共15页
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho... Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30. 展开更多
关键词 ocular artifact variational mode decomposition squirrel search algorithm global guidance ability opposition-based learning
下载PDF
Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
5
作者 Yingnan Zhao Guanlan Ji +2 位作者 Fei Chen Peiyuan Ji Yi Cao 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期719-735,共17页
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw... Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms. 展开更多
关键词 Short-term wind speed prediction variational mode decomposition attention mechanism SENet BiLSTM
下载PDF
Wind power forecasting based on improved variational mode decomposition and permutation entropy
6
作者 Zhijian Qu Xinxing Hou +2 位作者 Wenbo Hu Rentao Yang Chao Ju 《Clean Energy》 EI CSCD 2023年第5期1032-1045,共14页
Due to the significant intermittent,stochastic and non-stationary nature of wind power generation,it is difficult to achieve the desired prediction accuracy.Therefore,a wind power prediction method based on improved v... Due to the significant intermittent,stochastic and non-stationary nature of wind power generation,it is difficult to achieve the desired prediction accuracy.Therefore,a wind power prediction method based on improved variational modal decomposition with permutation entropy is proposed.First,based on the meteorological data of wind farms,the Spearman correlation coefficient method is used to filter the meteorological data that are strongly correlated with the wind power to establish the wind power prediction model data set;then the original wind power is decomposed using the improved variational modal decomposition technique to eliminate the noise in the data,and the decomposed wind power is reconstructed into a new subsequence by using the permutation entropy;with the meteorological data and the new subsequence as input variables,a stacking deeply integrated prediction model is developed;and finally the prediction results are obtained by optimizing the hyperparameters of the model algorithm through a genetic algorithm.The validity of the model is verified using a real data set from a wind farm in north-west China.The results show that the mean absolute error,root mean square error and mean absolute percentage error are improved by at least 33.1%,56.1%and 54.2%compared with the autoregressive integrated moving average model,the support vector machine,long short-term memory,extreme gradient enhancement and convolutional neural networks and long short-term memory models,indicating that the method has higher prediction accuracy. 展开更多
关键词 wind power prediction improved variational mode decomposition permutation entropy STACKING deep learning
原文传递
Wind Power Prediction Based on Variational Mode Decomposition and Feature Selection
7
作者 Gang Zhang Benben Xu +2 位作者 Hongchi Liu Jinwang Hou Jiangbin Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1520-1529,共10页
Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is su... Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is susceptible to climatic factors such as temperature, air pressure and wind speed.Therefore, this paper proposes a wind power prediction model combining multi-frequency combination and feature selection.Firstly, the variational mode decomposition(VMD) is used to decompose the wind power data, and the sub-components with different fluctuation characteristics are obtained and divided into high-, intermediate-, and low-frequency components according to their fluctuation characteristics. Then, a feature set including historical data of wind power and meteorological factors is established, which chooses the feature sets of each component by using the max-relevance and min-redundancy(m RMR) feature selection method based on mutual information selected from the above set. Each component and its corresponding feature set are used as an input set for prediction afterwards. Thereafter, the high-frequency input set is predicted using back propagation neural network(BPNN), and the intermediate-and low-frequency input sets are predicted using least squares support vector machine(LS-SVM). After obtaining the prediction results of each component, BPNN is used for integration to obtain the final predicted value of wind power, and the ramping rate is verified. Finally, through the comparison, it is found that the proposed model has higher prediction accuracy. 展开更多
关键词 Wind power prediction feature selection variational mode decomposition(VMD) max-relevance and min-redundancy(mRMR)
原文传递
Wind Speed Prediction Based on Improved VMD-BP-CNN-LSTM Model
8
作者 Chaoming Shu Bin Qin Xin Wang 《Journal of Power and Energy Engineering》 2024年第1期29-43,共15页
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s... Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms. 展开更多
关键词 Wind Speed Forecast Long Short-Term Memory Network BP Neural Network variational mode decomposition Data Fusion
下载PDF
Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit
9
作者 Yinghua Song Hairong Lyu Wei Zhang 《Journal on Big Data》 2023年第1期19-40,共22页
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres... A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features. 展开更多
关键词 Short-term passenger flow forecast variational mode decomposition long and short-term memory convolutional neural network residual network
下载PDF
Research on motor rotation anomaly detection based on improved VMD algorithm
10
作者 Fuzhao Chen Zhilei Chen +4 位作者 Qian Chen Tianyang Gao Mingyan Dai Xiang Zhang Lin Sun 《Railway Sciences》 2024年第1期18-31,共14页
Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geomet... Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems. 展开更多
关键词 Electromechanical brake system Railway brake system Motor fault diagnosis variational mode decomposition Error energy Feature extraction
下载PDF
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
11
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Improved Multi-Bandwidth Mode Manifold for Enhanced Bearing Fault Diagnosis 被引量:1
12
作者 Guifu Du Tao Jiang +2 位作者 Jun Wang Xingxing Jiang Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期179-191,共13页
Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units mul... Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units multiple fault-related modes with different bandwidths by a nonlinear manifold learning algorithm named local tangent space alignment(LTSA). The merit of the TM method is that the bearing fault-induced transients extracted contain low level of in-band noise without optimization of the VMD parameters. However, the determination of the neighborhood size of the LTSA is time-consuming, and the extracted fault-induced transients may have the problem of asymmetry in the up-and-down direction. This paper aims to improve the efficiency and waveform symmetry of the TM method.Specifically, the multi-bandwidth modes consisting of the fault-related modes with different bandwidths are first obtained by repeating the recycling VMD(RVMD) method with different bandwidth balance parameters. Then, the LTSA algorithm is performed on the multi-bandwidth modes to extract their inherent manifold structure, in which the natural nearest neighbor(Triple N, TN) algorithm is adopted to efficiently and reasonably select the neighbors of each data point in the multi-bandwidth modes. Finally, a weight-based feature compensation strategy is designed to synthesize the low-dimensional manifold features to alleviate the asymmetry problem, resulting in a symmetric TM feature that can represent the real fault transient components. The major contribution of the improved TM method for bearing fault diagnosis is that the pure fault-induced transients are extracted efficiently and are symmetrical as the real. One simulation analysis and two experimental applications in bearing fault diagnosis validate the enhanced performance of the improved TM method over the traditional methods. This research proposes a bearing fault diagnosis method which has the advantages of high efficiency, good waveform symmetry and enhanced in-band noise removal capability. 展开更多
关键词 variational mode decomposition Manifold learning Natural nearest neighbor algorithm Rolling bearing Fault diagnosis Time-frequency signal decomposition
下载PDF
Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading
13
作者 Yuze Li Shangrong Jiang +1 位作者 Xuerong Li Shouyang Wang 《Financial Innovation》 2022年第1期901-924,共24页
In recent years,Bitcoin has received substantial attention as potentially high-earning investment.However,its volatile price movement exhibits great financial risks.Therefore,how to accurately predict and capture chan... In recent years,Bitcoin has received substantial attention as potentially high-earning investment.However,its volatile price movement exhibits great financial risks.Therefore,how to accurately predict and capture changing trends in the Bitcoin market is of substantial importance to investors and policy makers.However,empirical works in the Bitcoin forecasting and trading support systems are at an early stage.To fill this void,this study proposes a novel data decomposition-based hybrid bidirectional deep-learning model in forecasting the daily price change in the Bitcoin market and conducting algorithmic trading on the market.Two primary steps are involved in our methodology framework,namely,data decomposition for inner factors extraction and bidirectional deep learning for forecasting the Bitcoin price.Results demonstrate that the proposed model outperforms other benchmark models,including econometric models,machine-learning models,and deep-learning models.Furthermore,the proposed model achieved higher investment returns than all benchmark models and the buy-and-hold strategy in a trading simulation.The robustness of the model is verified through multiple forecasting periods and testing intervals. 展开更多
关键词 Bitcoin price variational mode decomposition Deep learning Price forecasting Algorithmic trading
下载PDF
Research on Leak Location Method of Water Supply Pipeline Based on MVMD 被引量:1
14
作者 Qiansheng Fang Haojie Wang +1 位作者 Chenlei Xie Jie Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1237-1250,共14页
At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of ... At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%. 展开更多
关键词 Water supply pipeline leak location multivariate variational mode decomposition energy loss coefficient CROSS-CORRELATION
下载PDF
Prediction for permeability index of blast furnace based on VMD-PSO-BP model
15
作者 Xiao-jie Liu Yu-jie Zhang +4 位作者 Xin Li Zhi-feng Zhang Hong-yang Li Ran Liu Shu-jun Chen 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibrati... The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability. 展开更多
关键词 Big data-Blast furnace Air permeability variational mode decomposition Particle swarm optimization Back propagation model prediction
原文传递
Empirical Wavelet Transform Based Method for Identification and Analysis of Sub-synchronous Oscillation Modes Using PMU Data
16
作者 Joice G.Philip Jaesung Jung Ahmet Onen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期34-40,共7页
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from ... This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from PMUs are preprocessed to check for the presence of oscillations.If the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida algorithm.The superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest China.Results show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters. 展开更多
关键词 Empirical wavelet transform(EWT) sub-synchronous oscillation Prony-based method Yoshida algorithm variational mode decomposition phasor measurement unit(PMU)
原文传递
Application of SABO-VMD-KELM in Fault Diagnosis of Wind Turbines
17
作者 Yuling HE Hao CUI 《Mechanical Engineering Science》 2023年第2期23-29,共7页
In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme ... In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme Learning Machine(KELM)is proposed.Firstly,the SABO algorithm was used to optimize the VMD parameters and decompose the original signal to obtain the best modal components,and then the nine features were calculated to obtain the feature vectors.Secondly,the SABO algorithm was used to optimize the KELM parameters,and the training set and the test set were divided according to different proportions.The results were compared with the optimized model without SABO algorithm.The experimental results show that the fault diagnosis method of wind turbine based on SABO-VMD-KELM model can achieve fault diagnosis quickly and effectively,and has higher accuracy. 展开更多
关键词 Wind turbine generator Fault diagnosis Subtraction-Average-Based Optimizer(SABO) variational mode decomposition(VMD) Kernel Extreme Learning Machine(KELM)
下载PDF
Take Bitcoin into your portfolio:a novel ensemble portfolio optimization framework for broad commodity assets 被引量:1
18
作者 Yuze Li Shangrong Jiang +1 位作者 Yunjie Wei Shouyang Wang 《Financial Innovation》 2021年第1期1405-1430,共26页
The emergence and growing popularity of Bitcoins have attracted the attention of the financial world.However,few empirical studies have considered the inclusion of the newly emerged commodity asset in the global commo... The emergence and growing popularity of Bitcoins have attracted the attention of the financial world.However,few empirical studies have considered the inclusion of the newly emerged commodity asset in the global commodity market.It is of great importance for investors and policymakers to take advantage of this asset and its potential benefits by incorporating it as a part of the broad commodity trading portfolio.In this study,we propose a novel ensemble portfolio optimization(NEPO)framework utilized for broad commodity assets,which integrates a hybrid variational mode decomposition-bidirectional long short-term memory deep learning model for future returns forecast and a reinforcement learning-based model for optimizing the asset weight allocation.Our empirical results indicate that the NEPO framework could effectively improve the prediction accuracy and trend prediction ability across various commodity assets from different sectors.In addition,it could effectively incorporate Bitcoins into the asset pool and achieve better financial performance compared to traditional asset allocation strategies,commodity funds,and indices. 展开更多
关键词 Portfolio optimization Bitcoin Deep learning Reinforcement learning variational mode decomposition
下载PDF
基于变模态分解的自适应遗传算法下输电网故障测距与故障辨识策略仿真 被引量:3
19
作者 钟臻 张楷旋 《电力大数据》 2022年第10期62-68,共7页
现有输电网故障测距分成基于线路参数测距和行波测距。由于线路参数受气候和运行工况影响较大,故依此原理的故障测距精度不高。行波测距方法受波速不确定性的影响,精度也不高,且EMD算法中的模态混叠现象和端点效应难以消除。本文提出基... 现有输电网故障测距分成基于线路参数测距和行波测距。由于线路参数受气候和运行工况影响较大,故依此原理的故障测距精度不高。行波测距方法受波速不确定性的影响,精度也不高,且EMD算法中的模态混叠现象和端点效应难以消除。本文提出基于变模态分解的自适应遗传算法,对故障电流分解本征模态函数,计算暂态高频相关系数和暂态高频能量系数用于故障类型辨识。本文设置自适应遗传算子,弥补了普通遗传算法由于交叉概率和变异概率取作常数而可能导致其收敛在局部最优的缺点,通过自适应遗传算法对模态分量进行编译、交叉、选择操作。当达到收敛条件或者测距收敛时,输出测距结果和故障辨识。最后PSCAD建立三机九节点模型仿真验证,基于变模态分解和自适应遗传算法测距准确精度在99%以上,能正确输出故障类型。 展开更多
关键词 variational mode decomposition 自适应遗传算法 输电网 故障测距 故障辨识
下载PDF
A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM 被引量:1
20
作者 Zhaocai Wang Qingyu Wang Tunhua Wu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期133-149,共17页
Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term wa... Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas. 展开更多
关键词 Waterquality prediction Grasshopper optimization algorithm variational mode decomposition Long short-term memory neural network
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部