Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock...Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area.展开更多
Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77...Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.展开更多
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
The limit equilibrium method (LEM) is widely used for sliding stability evaluation of concrete gravitydams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously.However, the brit...The limit equilibrium method (LEM) is widely used for sliding stability evaluation of concrete gravitydams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously.However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stressover the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. Inaddition, the spatial variation in cohesion may introduce weak spots where failure can be initiated.Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shearstrength of the interface has not been studied previously. In this paper, numerical analyses are used toinvestigate the effect of brittle failure in combination with spatial variation in cohesion that is taken intoaccount by random fields with different correlation lengths. The study concludes that a possible existenceof weak spots along the interface has to be considered since it significantly reduces the overallshear strength of the interface, and implications for doing so are discussed.展开更多
This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Him...This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.展开更多
Loess is long-term aeolian dust deposition, characterized by loose structure, concentrated participle distribution and unstable mineral composition, and thus easy to cause extensive collapsibility and have general wat...Loess is long-term aeolian dust deposition, characterized by loose structure, concentrated participle distribution and unstable mineral composition, and thus easy to cause extensive collapsibility and have general water sensitivity. To reveal the difference in water sensitivity between naturally intact(NI) loess and mechanically compacted(MC) loess used for the check dam, the transient water release and imbibition method(TRIM) was used to acquire the suction stress–expanded hydraulic characteristic curves for the NI and MC loess and explore possible approaches for formulating the potential of loess water sensitivity. Based on the Local Field of Safety(LFS) associated with slope stability, we constructed a finite element model of a check dam to depict its failure processes under different rainfall scenarios. The results revealed the strong water sensitivity in NI loess, while the MC loess retained a certain water-sensitive potential. This capacity depends on the ‘water sensitivity coefficient’ obtained from the suction-stress characteristic curve,which better presented the deformation potential of the two loess samples at different water content levels. In the context of LFS, we identified two failure patterns in the dam body that were involved in loess water sensitivity under hydromechanical conditions: rainfall erosion-induced shallow mudflow failure, and preferential-infiltration progressive failure. These patterns may provide new insights into dam-breakage mechanisms and potential chain effects of check dams on the Chinese Loess Plateau from the perspective of soil–water interactions, which is vital for predicting the position and timing of check dam failure, and mitigating risks.展开更多
Temporal variation of rock mass properties,especially the strength degradation due to drying-wetting cycles as well as the acidic wetting fluid(rainfall or reservoir water)is crucial to stability of reservoir rock slo...Temporal variation of rock mass properties,especially the strength degradation due to drying-wetting cycles as well as the acidic wetting fluid(rainfall or reservoir water)is crucial to stability of reservoir rock slopes.Based on a series of drying-wetting cycling and experiments considering the influences of pH values,the degradation degree models of the reduced cohesion𝑐𝑐′,friction angle𝜑𝜑′are developed.2D stability analysis of the slope is subsequently carried out to calculate the factor of safety(Fs)via limit equilibrium method(LEM)and a predictive model of Fs is built using multivariate adaptive regression splines(MARS),revealing the effect of the drying-wetting cycles and pH value.The reliability analysis by Monte Carlo simulation is performed to rationally consider the uncertainty and the temporal variation of the shear strength parameters of rock mass.Results indicate that the MARS-based model can estimate the Fs accurately.The Fs and the reliability indexβdecrease with increase of drying-wetting cycles,and the temporal variation of rock mass properties has significant influence on the slope reliability.Overlooking the temporal variation of rock properties may overestimate the Fs and reliability indexβin the longer term.展开更多
The present investigation deals with the engineering geological studies of soil and rock masses in the Wadi Quaz area-Dam No. 2, East of Jeddah. Wadi Quaz area-Dam No. 2, East of Jeddah, Saudi Arabia often faces flood...The present investigation deals with the engineering geological studies of soil and rock masses in the Wadi Quaz area-Dam No. 2, East of Jeddah. Wadi Quaz area-Dam No. 2, East of Jeddah, Saudi Arabia often faces floods during rainy seasons, so it is so urgent to investigate the area before building any dam or preventing water from flow. Preventing water from flow will produce new dangerous factors such as uplift force which may cause the dam failure. To have a better understanding of the factors that may affect the slope stability, many rock slope locations are observed in detail to assess the effect of discontinuities formed in the rock masses. Fieldwork and Laboratory tests were carried out on soil and rocks. Soils included identification of soil type using unified soil classification system, permeability, water content and field density were done for soils. Rocks include identification of physical and mechanical properties such as: rock type, degree of weathering, rock strength, RQD, joint spacing measurements, and geometric properties (Dip, and Dip direction). Different methods were used to evaluate the potential failure in the studied area depending on rock mass rating and slope stability analysis. The well-known classification of rock masses titled Rock Mass Rating system [1] was used for categorizing the rock masses in the studied area besides slope mass rating [2] which would help to estimate the rock stability. The kinematical analysis was applied to investigate the potential failure mode which might occur in the dam abutments. This paper will provide the stability of dam abutments in both summer season and winter season besides general estimation of the seepage problems related to the soil and according to its permeability.展开更多
This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure.The critical plane failure surface should be determined because it theo...This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure.The critical plane failure surface should be determined because it theoretically indicates the most unfavorable plane to be considered when stabilizing a slope to rectify the instability generated by several statistically possible planes.This generates integrals that can be solved by numerical methods,such as the Newton Cotes and the finite differences methods.Additionally,a system of nonlinear equations is obtained and solved.The surface of the critical planar failure is determined by applying the condition of transversality in mobile boundaries,for which various examples are provided.The number of slices is varied in one of the examples,while the surface of the critical planar failure is determined in the others.Results are compared using analytical methods through axis rotations.All the results obtained by considering normal stress,safety factors,and critical planar failure are nearly the same;however,in this research,a study is carried out for“n”number of slices using programming methods.Sub-routines are important because they can be applied in slopes with different geometry,surcharge,interstitial pressure,and pseudo-static load.展开更多
基金supported by the National Natural Science Foundation of China(Project No.42377182 and 42090054)the National Key R&D Program of China(No.2022YFC3080200)。
文摘Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area.
基金by the National Natural Science Foundation of China(No.52174114)the State Key Laboratory of Hydroscience and Engineering of Tsinghua University(No.61010101218).
文摘Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
文摘The limit equilibrium method (LEM) is widely used for sliding stability evaluation of concrete gravitydams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously.However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stressover the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. Inaddition, the spatial variation in cohesion may introduce weak spots where failure can be initiated.Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shearstrength of the interface has not been studied previously. In this paper, numerical analyses are used toinvestigate the effect of brittle failure in combination with spatial variation in cohesion that is taken intoaccount by random fields with different correlation lengths. The study concludes that a possible existenceof weak spots along the interface has to be considered since it significantly reduces the overallshear strength of the interface, and implications for doing so are discussed.
基金the financial help by the Indian Space Research Organization (ISRO) through TDP project for debris flow modelling
文摘This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41530640 and 41731289)the National Key Research and Development Program of China(Grant No.2018YFC1504701)。
文摘Loess is long-term aeolian dust deposition, characterized by loose structure, concentrated participle distribution and unstable mineral composition, and thus easy to cause extensive collapsibility and have general water sensitivity. To reveal the difference in water sensitivity between naturally intact(NI) loess and mechanically compacted(MC) loess used for the check dam, the transient water release and imbibition method(TRIM) was used to acquire the suction stress–expanded hydraulic characteristic curves for the NI and MC loess and explore possible approaches for formulating the potential of loess water sensitivity. Based on the Local Field of Safety(LFS) associated with slope stability, we constructed a finite element model of a check dam to depict its failure processes under different rainfall scenarios. The results revealed the strong water sensitivity in NI loess, while the MC loess retained a certain water-sensitive potential. This capacity depends on the ‘water sensitivity coefficient’ obtained from the suction-stress characteristic curve,which better presented the deformation potential of the two loess samples at different water content levels. In the context of LFS, we identified two failure patterns in the dam body that were involved in loess water sensitivity under hydromechanical conditions: rainfall erosion-induced shallow mudflow failure, and preferential-infiltration progressive failure. These patterns may provide new insights into dam-breakage mechanisms and potential chain effects of check dams on the Chinese Loess Plateau from the perspective of soil–water interactions, which is vital for predicting the position and timing of check dam failure, and mitigating risks.
基金the financial support from Natural Science Foundation of Chongqing,China(cstc2018jcyjAX0632)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2017123)+1 种基金as well as Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(SXAPGC18ZD01,SXAPGC18YB03)In addition,the authors would like to express their appreciation to Liu et al.[Liu,Zhang and Fu(2014)]for making their test results available for this work.
文摘Temporal variation of rock mass properties,especially the strength degradation due to drying-wetting cycles as well as the acidic wetting fluid(rainfall or reservoir water)is crucial to stability of reservoir rock slopes.Based on a series of drying-wetting cycling and experiments considering the influences of pH values,the degradation degree models of the reduced cohesion𝑐𝑐′,friction angle𝜑𝜑′are developed.2D stability analysis of the slope is subsequently carried out to calculate the factor of safety(Fs)via limit equilibrium method(LEM)and a predictive model of Fs is built using multivariate adaptive regression splines(MARS),revealing the effect of the drying-wetting cycles and pH value.The reliability analysis by Monte Carlo simulation is performed to rationally consider the uncertainty and the temporal variation of the shear strength parameters of rock mass.Results indicate that the MARS-based model can estimate the Fs accurately.The Fs and the reliability indexβdecrease with increase of drying-wetting cycles,and the temporal variation of rock mass properties has significant influence on the slope reliability.Overlooking the temporal variation of rock properties may overestimate the Fs and reliability indexβin the longer term.
文摘The present investigation deals with the engineering geological studies of soil and rock masses in the Wadi Quaz area-Dam No. 2, East of Jeddah. Wadi Quaz area-Dam No. 2, East of Jeddah, Saudi Arabia often faces floods during rainy seasons, so it is so urgent to investigate the area before building any dam or preventing water from flow. Preventing water from flow will produce new dangerous factors such as uplift force which may cause the dam failure. To have a better understanding of the factors that may affect the slope stability, many rock slope locations are observed in detail to assess the effect of discontinuities formed in the rock masses. Fieldwork and Laboratory tests were carried out on soil and rocks. Soils included identification of soil type using unified soil classification system, permeability, water content and field density were done for soils. Rocks include identification of physical and mechanical properties such as: rock type, degree of weathering, rock strength, RQD, joint spacing measurements, and geometric properties (Dip, and Dip direction). Different methods were used to evaluate the potential failure in the studied area depending on rock mass rating and slope stability analysis. The well-known classification of rock masses titled Rock Mass Rating system [1] was used for categorizing the rock masses in the studied area besides slope mass rating [2] which would help to estimate the rock stability. The kinematical analysis was applied to investigate the potential failure mode which might occur in the dam abutments. This paper will provide the stability of dam abutments in both summer season and winter season besides general estimation of the seepage problems related to the soil and according to its permeability.
文摘This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure.The critical plane failure surface should be determined because it theoretically indicates the most unfavorable plane to be considered when stabilizing a slope to rectify the instability generated by several statistically possible planes.This generates integrals that can be solved by numerical methods,such as the Newton Cotes and the finite differences methods.Additionally,a system of nonlinear equations is obtained and solved.The surface of the critical planar failure is determined by applying the condition of transversality in mobile boundaries,for which various examples are provided.The number of slices is varied in one of the examples,while the surface of the critical planar failure is determined in the others.Results are compared using analytical methods through axis rotations.All the results obtained by considering normal stress,safety factors,and critical planar failure are nearly the same;however,in this research,a study is carried out for“n”number of slices using programming methods.Sub-routines are important because they can be applied in slopes with different geometry,surcharge,interstitial pressure,and pseudo-static load.