期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Ethiopian vegetation types,climate and topography 被引量:2
1
作者 Mengesha Asefa Min Cao +3 位作者 Yunyun He Ewuketu Mekonnen Xiaoyang Song Jie Yang 《Plant Diversity》 SCIE CAS CSCD 2020年第4期302-311,共10页
Ethiopia is land of geographical contrasts with elevations that range from 125 m below sea level in the Danakil Depression to 4533 m above sea level in the Semien Mountains,a world heritage site.The diverse climate of... Ethiopia is land of geographical contrasts with elevations that range from 125 m below sea level in the Danakil Depression to 4533 m above sea level in the Semien Mountains,a world heritage site.The diverse climate of various ecological regions of the country has driven the establishment of diverse vegetation,which range from Afroalpine vegetation in the mountains to the arid and semi-arid vegetation type in the lowlands.The formation of Ethiopian vegetation is highly connected to the climate and geological history of the country.Highland uplift and rift formation due to volcanic forces formed novel habitats with different topography and climatic conditions that have ultimately become drivers for vegetation diversification.Due to Ethiopia's connection with the temperate biome in the north and the Arabian Peninsula during the dry glacial period,the biotic assemblage of Ethiopian highlands consists of both Afrotropical and palearctic biota.In general,eight distinct vegetation types have been identified in Ethiopia,based mainly on elevation and climate gradients.These vegetation types host their own unique species,but also share several common species.Some of the vegetation types are identified as centers of endemism and have subsequently been identified globally as the East African Afromontane hotspot.Ethiopia is biologically rich,with more than 6500 vascular plant species.Of these species,12%are endemic mainly due to geographical isolation and unique climatic conditions.However,researchers have yet to extensively investigate the ecology,phenology,as well as the evolutionary,genetics,and conservation status of Ethiopian vegetations at community and species level over space and time.This lack of research is a barrier to achieving the goal of zero global plant extinctions.Taxa extinction risk assessment has not been extensively carried out for majority of Ethiopian species.Detailed research is needed to explore how vegetation and species respond to rapidly growing environmental change.Currently,human-induced climate change and habitat fragmentation are severely threatening the country's biodiversity,and the consequences of these effects have not been studied at large.Furthermore,we still lack scientific evidence on how micro-and macro-ecological and evolutionary processes have been shaping vegetation structures in this climatically,topographically,and geologically diverse country.These gaps in our knowledge represent an opportunity for ecologists,geneticists,evolutionary biologists,conservation biologists,and other experts to investigate the biodiversity status and the complex ecological processes involved in structuring vegetation dynamics so as to help take effective conservation actions. 展开更多
关键词 ELEVATION BIODIVERSITY CLIMATE Ethiopia vegetation types TOPOGRAPHY
下载PDF
Influence of vegetation type and topographic position on volumetric soil water content dynamics and similarity among surface and deep soil layers
2
作者 Muxing Liu Qiuyue Wang +3 位作者 Jun Yi Hailin Zhang Ji Liu Wei Hu 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第1期183-196,共14页
Clarifying the mechanisms governing volumetric soil water content(VSWC)dynamics in soil profiles is essential,as it can help to elucidate soil water transport processes and improve the prediction accuracy of soil hydr... Clarifying the mechanisms governing volumetric soil water content(VSWC)dynamics in soil profiles is essential,as it can help to elucidate soil water transport processes and improve the prediction accuracy of soil hydrological processes.Using Spearman's rank correlation and wavelet coherence analysis methods,similarity in soil profile VSWC dynamics and factors governing VSWC soil profile dynamics in upslopes and downslopes under three vegetation types(evergreen forest[EG],secondary deciduous forest mixed with shrubs[SDFS],and deforested pasture[DP])at different time scales(hourly,daily,weekly,and monthly)and in different seasons were analyzed.The results revealed significant similarity in the VSWC of different soil depths(P<0.01),with the similarity decreasing in accordance with the increment in soil depth.Greater VSWC similarity was found in EG than SDFS and DP sites and in upslope than downslope areas at both forest sites.The average significant coherence area(SCA)of VSWC similarity among surface and deep soil layers varied with the time scale,which was in the order of monthly(58.6%)>weekly(42.8%)>daily(21.8%).The effects of soil properties(e.g.,texture,saturated hydraulic conductivity),rainfall,and potential evapotranspiration(ET_(p))on VSWC similarity were related to the time scale and season in which VSWC monitoring took place.Soil properties had apparent effects on VSWC similarity at longer time scales(i.e.,monthly),with a high SCA.In contrast,the effects of rainfall and ET_(p) on VSWC similarity were concentrated at weekly and daily scales,with a relatively low SCA.Rainfall and ET_(p) dominated VSWC dynamics in the summer and fall,respectively.These results imply the use of measured VSWC at one soil depth to predict the VSWC at other soil depths was a reliable method.While the in-fluence of time scale effects and seasonal variations on prediction accuracy of VSWC should be considered. 展开更多
关键词 Volumetric soil water content Wavelet analysis Significant coherence area Time scale vegetation type Slope postion
原文传递
Flight Behavioural Responses for African Ungulates across Species and Vegetation Covers in a Trophy Hunting Ecosystem: A Case Study from Selous Game Reserve, Tanzania
3
作者 Ezra Peter Mremi Felister Michael Mombo +2 位作者 Michael Muganda Peadar Brehony Michael Honorati Kimaro 《Open Journal of Ecology》 2023年第8期525-535,共11页
Trophy hunting has severe consequences on wild animals’ behaviors, which in return has implications for affecting wildlife populations. The Selous Game Reserve is a protected area in Tanzania that has been subjected ... Trophy hunting has severe consequences on wild animals’ behaviors, which in return has implications for affecting wildlife populations. The Selous Game Reserve is a protected area in Tanzania that has been subjected to commercial trophy hunting for decades, and information about the effects of trophy hunting on animals’ welfare is still scarce. The Flight Initiating Distance (FID) can be a good measure to evaluate the welfare of animals and the level of risk perception towards anthropogenic disturbances, including trophy hunting. The study used linear mixed models to assess the flight responses of twelve commonly hunted species in the Selous game reserve (S.G.R.). The study compared animal vigilance between species, vegetation types, and group size. The FID varied between species, with which more vigilance was observed in zebras, elands, wildebeests, and sable antelopes. The study found a significant influence of vegetation cover on individual species’ FID. Further, the study found a significant influence of group size on animals’ vigilance (L. M. M., 95% CI = 0.590 - 4.762), in which there was a decrease in FID with an increase in group size for wildebeests. At the same time, other species, such as buffaloes, eland, hartebeests, and zebras, had their FIDs increasing with the increase in group size. We conclude that the impact of trophy hunting on savannah ungulates varies between species, vegetation covers, and group size of individual species. Regulatory authorities should consider minimum approach distances by trophy hunters in different vegetation cover to reduce animal biological disturbances. 展开更多
关键词 Trophy Hunting Animal Behavior Flight Initiating Distance vegetation types Wildlife Species
下载PDF
Classification of vegetative types in Changbai Mountain based on optical and microwave remote sensing data
4
作者 YANG Ying XU Mengxia +3 位作者 LI Sheng WANG Mingchang LIU Ziwei ZHAO Shijun 《Global Geology》 2023年第2期122-132,共11页
Highly accurate vegetative type distribution information is of great significance for forestry resource monitoring and management.In order to improve the classification accuracy of forest types,Sentinel-1 and 2 data o... Highly accurate vegetative type distribution information is of great significance for forestry resource monitoring and management.In order to improve the classification accuracy of forest types,Sentinel-1 and 2 data of Changbai Mountain protection development zone were selected,and combined with DEM to construct a multi-featured random forest type classification model incorporating fusing intensity,texture,spectral,vegetation index and topography information and using random forest Gini index(GI)for optimization.The overall accuracy of classification was 94.60%and the Kappa coefficient was 0.933.Comparing the classification results before and after feature optimization,it shows that feature optimization has a greater impact on the classification accuracy.Comparing the classification results of random forest,maximum likelihood method and CART decision tree under the same conditions,it shows that the random forest has a higher performance and can be applied to forestry research work such as forest resource survey and monitoring. 展开更多
关键词 vegetative type classification random forest radar data optical data
下载PDF
Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation 被引量:9
5
作者 Yinli Bi Hui Zou Chenwei Zhu 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期198-206,共9页
To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method a... To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining. 展开更多
关键词 Soil bulk density Soil infiltration rate Sandy land vegetation type
下载PDF
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau 被引量:2
6
作者 ZHOU Tairan HAN Chun +3 位作者 QIAO Linjie REN Chaojie WEN Tao ZHAO Changming 《Journal of Arid Land》 SCIE CSCD 2021年第10期1015-1025,共11页
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact... Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content,we continuously monitored the seasonal dynamics in soil water content in four plots(natural grassland,Caragana korshinskii,Armeniaca sibirica and Pinus tabulaeformis)in Chinese Loess Plateau.The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth,showing obvious seasonal variations.Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland,and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm.Spring and autumn are the key seasons for replenishment of soil water by precipitation.Changes in soil water content are affected by precipitation,vegetation types,soil evaporation and other factors.The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area.Due to artificial vegetation plantation in this area,soil will face a water deficit crisis in the future. 展开更多
关键词 soil water content vegetation type PRECIPITATION seasonal change EVAPORATION
下载PDF
Halophyte Vegetation Influences Soil Microbial Community of Coastal Salt Marsh 被引量:1
7
作者 GU Chen SHI Jiyan +8 位作者 RUI Jianliang YU Yanming HUANG Weibin LU Zhinai CHEN Yao CHEN Xiaojun DONG Shudi HU Zhijun YE Chenghua 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1549-1556,共8页
Coastal wetlands are the most productive ecosystems worldwide and can provide important ecosystem services,yet the characteristics of microbial community within these systems remain poorly understood.Microbial communi... Coastal wetlands are the most productive ecosystems worldwide and can provide important ecosystem services,yet the characteristics of microbial community within these systems remain poorly understood.Microbial community of salt marsh vegetation and the associated soil physio-chemical properties were investigated in this study.Three typical Suaeda australis,Phragmites australis,Spartina alterniflora wetlands,and non-vegetated bare mudflats in the Zhoushan Islands were studied to advance the understanding of the characteristics of soil bacterial communities in coastal wetlands.Results showed that the bare mudflats exhibited high pH value and soil moisture content compared with the vegetated samples.In different vegetation types,the organic matter content,total nitrogen,and total potassium content decreased in the order:S.alterniflora wetland>P.australis wetland>S.australis wetland,and there was no obvious difference in total phosphorous content.The halophytes could decrease soil salinity compared with bare mudflats.Proteobacteria,Nitrospinae,Bacteroidetes,Acidobacteria,and Nitrospirae were the predominant level across all samples.Functional prediction showed that SPA-covered soil might play vital roles in sulphur cycling,while SUA and PHR covered soils were involved in nitrogen cycling.This study could provide the first insight into the microbial community of this study area and contribute to a better understanding of vegetation microbiota and bioremediation in coastal wetland ecosystem. 展开更多
关键词 illumina sequencing salt marsh vegetation type soil bacterial community function prediction
下载PDF
Decreasing magnitude of soil erosion along vegetation succession on sloping farmland in the Loess Plateau of China:5 years field monitoring evidence
8
作者 LIANG Yue JIAO Ju-ying +2 位作者 TANG Bing-zhe CAO Bin-ting LI Hang 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2360-2373,共14页
The impacts of vegetation restoration on the soil erosion have been widely elucidated in the semi-arid regions.However,the magnitude of soil erosion on abandoned sloping farmland still remained unclear and their respo... The impacts of vegetation restoration on the soil erosion have been widely elucidated in the semi-arid regions.However,the magnitude of soil erosion on abandoned sloping farmland still remained unclear and their responses to vegetation succession were rarely addressed.The main objective of this study is to determine the magnitude of soil erosion along vegetation succession and explore the impact of vegetation succession on soil erosion from abandoned sloping farmland.Field observations were employed to monitor the rainfall,runoff,and soil erosion of seven sloping farmland plots with different abandoned ages and bare land from 2015 to 2019.The results indicated that the annual runoff depth and soil erosion modulus of vegetation types were in the range of 0.46 to 5.49 mm·a^(-1)and 1.3 to 24.5 t·km^(-2)·a^(-1),respectively.The vegetation effectively reduced the annual surface runoff and soil erosion with reduction of 73.8% to 97.8%and 98.0% to 99.9% as opposed to bare land.However,there were no significant differences in runoff and soil erosion for different vegetation types along succession.The largest event of vegetation types contributed to 38.7%-44.1% of the annual runoff and 42.5%-66.3% of the annual soil erosion,respectively.Vegetation restoration considerably alleviated the contribution of largest erosive event to annual soil erosion.The relationships between soil erosion,runoff and rainfall factors could be fitted well by linear functions,and the performances of regression models in predicting runoff were more satisfactory compared to predicting soil erosion.The Artemisia gmelinii(Agm)+Stipa bungeana(Sb)optimized the trade-off between sediment reduction and runoff maintenance,which should be selected as the suitable vegetation types to achieve the sustainability of socio-ecological systems. 展开更多
关键词 vegetation restoration Abandoned ages Soil erosion vegetation types Abandoned slope Loess Plateau
原文传递
Wind erodibility indices of aeolian sandy soils impacted by different vegetation restoration:a case study from the Shannan valley of the Yarlung Zangbo River
9
作者 ZHANG Bao-jun XIONG Dong-hong +1 位作者 LIU Lin TANG Yong-fa 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2830-2845,共16页
Controlling aeolian desertification is a key ecological target on the Tibetan Plateau,especially within the widespread river valleys.Vegetation recovery can change the near-soil surface characteristics,which thus may ... Controlling aeolian desertification is a key ecological target on the Tibetan Plateau,especially within the widespread river valleys.Vegetation recovery can change the near-soil surface characteristics,which thus may influence wind erodibility of soils.However,these potential effects are not sufficiently evaluated for aeolian sandy soils.This study selected the Shannan valley of the Yarlung Zangbo River on the southern Tibetan Plateau as a case to investigate the variations in wind erodibility of aeolian sandy soils impacted by different vegetation restoration,since many ecological measures have been implemented in recent decades in the river valley.Eight vegetated sandy lands with different restoration types and ages and two bare sandy lands(as controls)were chosen as test sites.Four vegetated sandy lands were covered by Artemisia wellbyi,Hedysarum scoparium,Sophora moorcroftiana,and Populus L.with the similar restoration age of 10 years.For Sophora moorcroftiana and Populus L.communities,two restoration ages of 6 and over 30 years were also selected respectively.Wind erodibility was reflected by wind erodible fraction(EF),mean weight diameter of dry aggregates(MWD),capillary water capacity(CWC),soil cohesion(CS),and soil penetration resistance(PR)from different aspects.A comprehensive wind erodibility index(CWEI)was further produced by a weighted summation method to combine those five indices together and comprehensively quantify the effects of vegetation restoration on wind erodibility of aeolian sandy soils.The results showed that revegetation was efficient to reduce wind erodibility of aeolian sandy soils.EF generally decreased,while MWD,CWC,CS,and PR increased after vegetation restoration on the aeolian sandy lands.The CWEI of vegetated sandy lands varied greatly from 0.850 to 0 under different restoration types and ages and decreased by 14.4%to 100%compared to the control.Under the four different restoration types,Populus L.had the relatively minimum CWEI,followed by Artemisia wellbyi,Sophora moorcroftiana and Hedysarum scoparium.With succession from 6 to over 30 years,CWEI gradually declined for both the Populus L.and Sophora moorcroftiana restored sandy lands.The decreases in wind erodibility(reflected by CWEI)on vegetated sandy lands were dominantly controlled by the improvement of soil texture and the increases of organic matter and calcium carbonate contents with vegetation restoration.The combined vegetation measure of Populus L.mixed with shrubs and grasses was suggested as the optimal restoration type for mitigating wind erodibility of aeolian sandy soils in the Shannan valley of the Yarlung Zangbo River. 展开更多
关键词 Wind erosion Soil erodibility Erodible fraction vegetation type Ecological restoration Yarlung Zangbo River valley
原文传递
Impact of natural disturbance, forest management and vegetation cover on topsoil biochemical characteristics of Tatra Mts.(Slovakia)
10
作者 Jana GáFRIKOVá Milan ZVARíK +2 位作者 Peter HANAJíK Marek SúLOVSKY Ivana VYKOUKOVá 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1294-1309,共16页
Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris,especially in the areas of managed forest ecosystems.Induced shifts in soils due to management practic... Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris,especially in the areas of managed forest ecosystems.Induced shifts in soils due to management practices play a crucial role in the restoration and maintaining of key ecosystem services.This paper focuses on topsoil chemical properties in relation to vegetation type(trees,shrubs and herbs)evolving at windstorm damaged(in 2004)areas with former Norway spruce(Picea abies)forests in the Tatra Mts.region(Slovakia).We assessed the content of topsoil organic matter fractions(extractives,holocellulose(HC)and lignin(Lig)),carbon in microbial biomass(Cmic),soil organic matter(SOM)and the content of elements N,C,H and S.The study plots represent different types of post-windthrow disturbance history/regime:wooden debris extraction(EXT),wooden debris not extracted(NEX),wooden debris extraction followed by wildfire(FIR),affected by the windstorm in 2014 with the subsequent wooden debris extraction(REX)and unaffected(REF).Our results revealed significant differences among sites in the content of dichloromethane extractives(EXT vs.REX and FIR),acetone extractives(NEX vs.EXT,FIR and REF),ethanol extractives(FIR vs.EXT,NEX and REF),water extractives(FIR vs.REX,NEX)and Cmic(EXT vs.NEX,FIR and REF).The topsoil of Vaccinium myrtillus and Picea abies showed a higher ratio of C/N,N/Lig,and Lig/HC compared to Rubus idaeus,Avenella flexuosa,Calamagrostis villosa,and Larix decidua.The content of N,C,H and S varied between topsoil with shrubs(Vaccinium myrtillus,Rubus idaeus)and grasses(Avenella flexuosa,Calamagrostis villosa).A positive correlation between soil organic matter(SOM)and polar extractives(r=0.81)and a negative correlation between SOM and HC(r=-0.83)was revealed.The carbon content in microbial biomass(Cmic)is positively correlated with acid soluble lignin(ASL)(r=0.85).We also identified a strong correlation between Klason lignin(KL)and the Lig/HC ratio(r=0.97). 展开更多
关键词 WINDTHROW WILDFIRE Organic matter fractions vegetation type Norway spruce Topsoil chemical properties
原文传递
Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land,China 被引量:2
11
作者 YAN Ru FENG Wei 《Journal of Arid Land》 SCIE CSCD 2020年第3期473-494,共22页
To date,much of research on revegetation has focused on soil microorganisms due to their contributions in the formation of soil and soil remediation process.However,little is known about the soil bacteria and their fu... To date,much of research on revegetation has focused on soil microorganisms due to their contributions in the formation of soil and soil remediation process.However,little is known about the soil bacteria and their functions respond to the diverse vegetational types in the process of vegetation restoration.Effects of dominated vegetation,i.e.,Artemisia halodendron Turcz Ex Bess,Caragana microphylla Lam.,Hedysarum fruticosum Pall.and Pinus sylvestris L.on bacterial community structures and their potential functions in the Hulun Buir Sandy Land,China were determined using high-throughput 16S rRNA gene sequencing and phylogenetic investigation of communities by reconstruction of unobserved states(PICRUSt)in 2015.Although the dominant phyla of soil bacterial community among different types of vegetation,including Proteobacteria,Actinobacteria,Acidobacteria,Bacteroidetes and Firmicutes,were similar,the relative abundance of these dominant groups significantly differed,indicating that different types of vegetation might result in variations in the composition of soil bacterial community.In addition,functional genes of bacterial populations were similar among different types of vegetation,whereas its relative abundance was significantly differed.Most carbon fixation genes showed a high relative abundance in P.sylvestris,vs.recalcitrant carbon decomposition genes in A.halodendron,suggesting the variations in carbon cycling potential of different types of vegetation.Abundance of assimilatory nitrate reduction genes was the highest in P.sylvestris,vs.dissimilatory nitrate reduction and nitrate reductase genes in A.halodendron,indicating higher nitrogen gasification loss and lower nitrogen utilization gene functions in A.halodendron.The structures and functional genes of soil bacterial community showed marked sensitivities to different plant species,presenting the potentials for regulating soil carbon and nitrogen cycling. 展开更多
关键词 bacterial taxonomic composition functional gene vegetational type soil carbon and nitrogen 16S rRNA
下载PDF
Effects of land use changes for ecological restoration on soil moisture on the Chinese Loess Plateau:a meta-analytical approach 被引量:1
12
作者 Bowei Yu Gaohuan Liu Qingsheng Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第2期443-452,共10页
Soil moisture is an important resource for plant growth on the arid and semi-arid Loess Plateau of China where the‘‘Grain for Green’’project was launched in 1999,but there has been no systematic evaluation of soil... Soil moisture is an important resource for plant growth on the arid and semi-arid Loess Plateau of China where the‘‘Grain for Green’’project was launched in 1999,but there has been no systematic evaluation of soil moisture from the effects of ecological restoration at a regional scale.We systematically assessed 63 published studies during 2000-2015,including 2050 observations at 68 sites on the Loess Plateau with the aim of determining soil moisture changes and the factors influencing those changes.We found that,after land use conversion,soil moisture decreased by 17%in the upper 100 cm soil layer and that tree plantations and shrub lands appeared to cause soil moisture depletion which became increasingly serious with soil depth.The decrease of soil moisture was significantly influenced by the planting species in all restoration types(tree plantations,shrub lands,and grasslands).We also found that tree plantations and grasslands converted from farmlands consumed more soil moisture than from wasteland(including bare land,abandoned land and wild grasslands).Artificial restoration led to significant soil moisture reduction,but natural restoration had little effect on soil moisture.Therefore,natural restoration should be an alternative restoration practice on the Loess Plateau.These results will provide helpful information for artificial afforestation and planning ecological restoration campaigns for policy makers on water-limited regions. 展开更多
关键词 Soil moisture Ecological restoration Land conversion vegetation type Artificial afforestation
下载PDF
Carbon sequestration in biomass and soil following reforestation:a case study of the Yangtze River Basin 被引量:1
13
作者 Jianyu Wang Claudio O.Delang +3 位作者 Guolong Hou Lei Gao Xiankun Yang Xixi Lu 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1663-1690,共28页
The effect of reforestation on carbon sequestration has been extensively studied but there is less understanding of the changes that stand age and vegetation types have on changes in biomass carbon and soil organic ca... The effect of reforestation on carbon sequestration has been extensively studied but there is less understanding of the changes that stand age and vegetation types have on changes in biomass carbon and soil organic carbon(SOC)after reforestation.In this study,150 reforested plots were sampled across six provinces and one municipality in the Yangtze River Basin(YRB)during 2017 and 2018 to estimate carbon storage in biomass and soil.The results illustrate that site-averaged SOC was greater than site-averaged biomass carbon.There was more carbon sequestered in the biomass than in the soil.Biomass carbon accumulated rapidly in the initial 20 years after planting.In contrast,SOC sequestration increased rapidly after 20 years.In addition,evergreen species had higher carbon density in both biomass and soil than deciduous species and economic species(fruit trees).Carbon sequestration in evergreen and deciduous species is greater than in economic species.Our findings provide new evidence on the divergent responses of biomass and soil to carbon sequestration after reforestation with respect to stand ages and vegetation types.This study provides relevant information for ecosystem management as well as for carbon sequestration and global climate change policies. 展开更多
关键词 Biomass carbon Soil organic carbon Stand age vegetation type Yangtze River Basin(YRB)
下载PDF
Can Stand Density and Stem Stratification Be Indicators of Aboveground Biomass in Woody Plant Recruitment in Savannah 被引量:1
14
作者 Saran Traoré Sébastien Ange Habih Nombré +2 位作者 Issiaka Keïta Hassan Bismarck Nacro Brice Sinsin 《Open Journal of Forestry》 2022年第1期41-59,共19页
Stem density and size stratification of woody species are informative of vegetation conditions and its physiognomy in savannah whereas their variation influence woody population functioning. Current study endeavoured ... Stem density and size stratification of woody species are informative of vegetation conditions and its physiognomy in savannah whereas their variation influence woody population functioning. Current study endeavoured to evaluate the stand density and size variability of woody species related to aboveground biomass in a Sudanian savannah. Total height, stem diameter at breast height (dbh) ≥ 5 cm were measured in 30 plots of 50 m </span></span><span><span><span style="font-family:"">×<span> 20 m laid in respect to vegetation type as bowal, shrubland and woodland. Species diversity, stem density, height and basal area were calculated and compared across sites and variation in stem dbh classes evaluated. Total aboveground biomass was estimated and thereafter linear relationships were established between stand density and aboveground biomass</span></span></span></span><span><span><span style="font-family:"">,</span></span></span><span><span><span style="font-family:""> and basal area. Results revealed three different sites with an overall 58 species identified through vegetation type including liana species (4 stems in bowal) with 18 genera and 42 families. Fabaceae Combretaceae, Anacardiaceae and Rubiaceae were dominant families. Small sized trees represented 72% of total stem density considered in structure with significant higher basal area, while large sized trees as 28% were scarcely distributed. More than 70% variation in biomass w</span></span></span><span><span><span style="font-family:"">as </span></span></span><span><span><span style="font-family:"">due to stem density and basal area with a dominance of small trees. In conclusion increase size in tree community indicated increase in accumulated aboveground biomass as positive regeneration features. But, change in vegetation structure strongly influence negatively species ability to grow from lower to upper size class and later on, disrupt ecosystem functioning. Plant stem density and stratification could be considered as indicators of aboveground biomass fluctuating in regeneration monitoring. 展开更多
关键词 Aboveground Biomass Biodiversity Conservation Plant Regeneration Stem Structure vegetation type
下载PDF
Assessment of Plant Commnunity Structure in a Tropical Wetland Affected by Brick Making—The Case of Sironga Wetland, Kenya
15
作者 Caren N. Atalitsa George M. Ogendi +1 位作者 John M. Mironga Nicholas Olekaikai 《Journal of Environmental Protection》 2021年第11期1001-1008,共8页
Brick making is one of the major small-scale industries in Sironga which has been expanding due to the growing demand for urban expansion. Due to the increasing population pressure, brick-making is competing for the w... Brick making is one of the major small-scale industries in Sironga which has been expanding due to the growing demand for urban expansion. Due to the increasing population pressure, brick-making is competing for the wetland resources. Sironga wetland is threatened with serious degradation and probable loss of plant diversity. Conversion of this wetland for economic uses such as brick making has resulted in its loss. The objective of the study was to assess the effects of brick making on plant diversity in Sironga wetland. Nyamira County, Kenya. A one metre by one metre quadrat frame was laid down and perpendicularly recorded the percent cover for each species found inside the quadrant plus the percentage area covered by the bare ground litter. From each transect lines “diagonally” detailed vegetation under study was then done. The plant species were recorded and classified into three life-forms;herbs, sedges and grasses. The study revealed that grasses had the highest diversity H = 1.144. Diversity for herbs was H = 0.987 and H = 0.899 for reeds respectively. The study concluded that brick-making activities affected the plant diversity in Sironga wetland. This may be attributed partly to the limited information and awareness campaigns to the surrounding communities on the values and benefits of wetland ecosystem services and the lack of alternative livelihood sources. The study recommends that alternative livelihoods are provided and awareness campaigns on the values and benefits of wetlands to the residents are done by the relevant agencies. 展开更多
关键词 Diversity Index vegetation types Environmental Degradation
下载PDF
Characteristics and utilization of plant diversity and resources in Central Asia
16
作者 Yuanming Zhang Daoyuan Zhang +4 位作者 Wenjun Li Yaoming Li Chi Zhang Kaiyun Guan Borong Pan 《Regional Sustainability》 2020年第1期1-10,共10页
The geographical region of Central Asia comprises Kazakhstan,Kyrgyzstan,Tajikistan,Uzbekistan,Turkmenistan,and the Xinjiang Uygur Autonomous Region of China.Central Asia’s temperate forests,steppes,and sandy deserts,... The geographical region of Central Asia comprises Kazakhstan,Kyrgyzstan,Tajikistan,Uzbekistan,Turkmenistan,and the Xinjiang Uygur Autonomous Region of China.Central Asia’s temperate forests,steppes,and sandy deserts,including riparian tugai forests,have been identified by the World Wide Fund for Nature as Global 200 ecoregions,and the Mountains of Central Asia are considered biodiversity hotspots.Here,we describe and analyze the diverse characteristics and utilization of plant diversity and resources of the region.We confirm that there are 9520 species of higher plants,20%of which are endemic species,belonging to 138 families and 1176 genera.The vegetation geography of Central Asia can be divided into 5 provinces and 33 districts,and more than 65%species have a Central Asian geographical distribution pattern.Plant resource utilization can be grouped into 5 categories and 31 subcategories,including food,medicine,industry,environmental protection,construction,and plant germplasm.In this review,we also discuss the principal threats to plant biodiversity in Central Asia posed by global climate change and offer recommendations for conservation strategies. 展开更多
关键词 FLORA Plant resources BIODIVERSITY vegetation types Central Asia
下载PDF
Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002-2018 被引量:4
17
作者 Peng He Lishuai Xu +2 位作者 Zhengchun Liu Yaodong Jing Wenbo Zhu 《Regional Sustainability》 2021年第1期36-46,共11页
Understanding the spatio-temporal changes of vegetation and its climatic control factors can provide an important theoretical basis for the protection and restoration of eco-environments.In this study,we analyzed the ... Understanding the spatio-temporal changes of vegetation and its climatic control factors can provide an important theoretical basis for the protection and restoration of eco-environments.In this study,we analyzed the normalized difference vegetation index(NDVI)in the Chinese Loess Plateau(CLP)from 2002 to 2018 via trend analysis,stability analysis,and Mann-Kendall mutation test to investigate the change of vegetation.In addition,we also used the skewness analysis and correlation analysis to explore the contribution of climate change and human activities on regional vegetation changes.The results indicated that the overall increasing trend of NDVI from 2002 to 2018 was significant The areas showing increased NDVI were mainly distributed in the south-eastern CLP and the irrigation districts of the Yellow River to the north and west of the CLP,while the areas showing decreased NDVl were concentrated in the desert of the westem Ordos Plateau,Longzhong Loess Plateau,and the built-up and adjacent areas.Precipitation was the dominant factor contributing to vegetation growth in the CLP,while vegetation was less dependent onprecipitation in the irigation districts.The increasement of NDVI has led to a prolonged responsetime of vegetation to water stress and a lag effect of less than two months in the CLP.The effect of temperature on NDVI was not significant;significant negative correlations between NDVI and temperature were found only in the desert,the Guanzhong Plain,the southem Liupan Mountains,and the southeastem Taihang Mountains,owing to high temperatures,urban heat islands,and large cloud cover in mountainous areas.Affected by the"Grain for Green Program"(GGP),NDVIin the CLP increased from 2002 to 2018;however,the increasing trends of NDNI for differentvegetation cover types were significantly different owing to the difference in background status.The increasing contribution rate of NDVI in the CLP mainly came from crops and steppes.Urban not only led to the destruction of vegetation but also had radiation effect causing negative impact of NDVI around the cities.This resulted in the aggravation of the negative bias of NDVI with time in the CLP.The results provide a long-term perspective for regional vegetation protection and utilization in the CLP. 展开更多
关键词 Chinese Loess Plateau NDVI vegetation cover types TEMPERATURE PRECIPITATION Human activities
下载PDF
Variability in pattern and hydrogen isotope composition(δ^(2)H)of long-chain n-alkanes of surface soils and its relations to climate and vegetation characteristics:A meta-analysis
18
作者 Guo CHEN Xiaozhen LI +4 位作者 Xiaolu TANG Wenyi QIN Haitao LIU Michael ZECH Karl AUERSWALD 《Pedosphere》 SCIE CAS CSCD 2022年第3期369-380,共12页
The average chain length(ACL),carbon preference index(CPI),and hydrogen isotope composition(δ^(2)H)of long-chain n-alkanes in sediments have been used to retrieve information about the paleoclimate.Despite their impo... The average chain length(ACL),carbon preference index(CPI),and hydrogen isotope composition(δ^(2)H)of long-chain n-alkanes in sediments have been used to retrieve information about the paleoclimate.Despite their importance as in-between media from leaves to sediments,n-alkanes of surface soils have not been systematically analyzed at large scale.Such an investigation of the spatial variation of n-alkane properties in soil and their dependence on climatic and botanic(e.g.,vegetation type)factors could provide a rationale for a better estimation of the past environment.We synthesized the patterns andδ^(2)H of long-chain n-alkanes in soil(δ^(2)H_(n-alkanes))with regard to vegetation types(cropland,grassland,shrubland,and woodland)and environmental factors using data from peer-reviewed papers.Our results showed that the ACL and CPI of soil C_(27)–C_(33) n-alkanes were not suitable indicators for differentiating vegetation types at large scale;instead,ACL significantly correlated with water conditions such as mean annual precipitation(MAP)and Palmer drought severity index(PDSI),and CPI significantly correlated with temperature without significant influence of vegetation type.The variation(i.e.,standard deviation)of fractionation between theδ^(2)H values in annual precipitation and in soil n-alkanes(ε_(rain-soil))was smaller than that reported in leaves;therefore,soils were better suited to quantifying the general growing conditions of plants at a certain site.The fractionationε_(rain-soil)correlated with climatic conditions as described by the PDSI and relative humidity(RH).This correlation agreed with the change in leaf water enrichment with changing RH taken from the literature and was independent of the vegetation type at large scale.This meta-analysis may provide useful information for the variations of the patterns andδ^(2)H_(n-alkanes) values in surface soils. 展开更多
关键词 average chain length(ACL) ALTITUDE carbon preference index(CPI) leaf water moisture precipitation TOPSOIL vegetation type
原文传递
Soil organic carbon stock in Abune Yosef afroalpine and sub-afroalpine vegetation,northern Ethiopia
19
作者 Kflay Gebrehiwot Temesgen Desalegn +2 位作者 Zerihun Woldu Sebsebe Demissew Ermias Teferi 《Ecological Processes》 SCIE EI 2018年第1期56-64,共9页
Introduction:Soil is the major reservoir of organic carbon.There is a paucity of soil organic carbon(SOC)stock data of afroalpine and sub-afroalpine vegetation in Ethiopia.Hence,this study was conducted to estimate th... Introduction:Soil is the major reservoir of organic carbon.There is a paucity of soil organic carbon(SOC)stock data of afroalpine and sub-afroalpine vegetation in Ethiopia.Hence,this study was conducted to estimate the SOC stock and correlate it with soil physicochemical properties in Abune Yosef afroalpine and sub-afroalpine vegetation.Systematic sampling was employed to collect soil samples from upper 30 cm.Dry bulk density soil pH(1:2.5 water);organic carbon(Walkley and Black),and total nitrogen(Kjeldahl)were the methods used for soil analysis.Pearson correlation and linear regression analysis were performed in SPSS 24 statistical software.Results:The SOC stock of the study area was found to be 79.57 t C ha−1.Soil organic carbon stock showed statistically significant positive correlation with vegetation type(r=0.522,p<0.01),bulk density(r=0.62,p<0.01),total nitrogen(r=0.41,p<0.01),and altitude(r=0.468,p<0.01)and negative correlation with slope(r=−0.298,p<0.05).The present study revealed similar soil organic carbon stock(SOCS)with the Intergovernmental Panel on Climate Change(IPCC)default estimate for similar regions.Positive correlation of SOCS and altitude could be resulted from the variations in anthropogenic disturbances,temperature,and precipitation vegetation types.The negative correlation between SOCS and slope is the result from the predictably higher soil erosion at steeper slopes.Temporal livestock trampling increased the bulk density but never affected the SOCS to decline.Aspect did not show any significant relationship with SOCS due to either the under surveying of all aspects or similar solar radiation found in the study area.Moreover,gazing,aspect,and soil pH did not show statistically significant impact on SOCS.Conclusion:The SOCS of Abune Yosef afroalpine and sub-afroalpine vegetation is similar to the IPCC default estimate for similar regions.This is a great contribution both to the global and local terrestrial carbon sink. 展开更多
关键词 Abune Yosef Afroalpine and sub-afroalpine vegetation Altitude gradient Correlation Organic carbon stock vegetation type
原文传递
基于垂直带谱的南北过渡带1:5万植被类型图遥感制图研究——以太白山为例 被引量:3
20
作者 姚永慧 索南东主 张俊瑶 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期267-280,共14页
The compilation of 1:250,000 vegetation type map in the North-South transitional zone and 1:50,000 vegetation type maps in typical mountainous areas is one of the main tasks of Integrated Scientific Investigation of t... The compilation of 1:250,000 vegetation type map in the North-South transitional zone and 1:50,000 vegetation type maps in typical mountainous areas is one of the main tasks of Integrated Scientific Investigation of the North-South Transitional Zone of China.In the past,vegetation type maps were compiled by a large number of ground field surveys.Although the field survey method is accurate,it is not only time-consuming,but also only covers a small area due to the limitations of physical environment conditions.Remote sensing data can make up for the limitation of field survey because of its full coverage.However,there are still some difficulties and bottlenecks in the extraction of remote sensing information of vegetation types,especially in the automatic extraction.As an example of the compilation of 1:50,000 vegetation type map,this paper explores and studies the remote sensing extraction and mapping methods of vegetation type with medium and large scales based on mountain altitudinal belts of Taibai Mountain,using multi-temporal high resolution remote sensing data,ground survey data,previous vegetation type map and forest survey data.The results show that:1)mountain altitudinal belts can effectively support remote sensing classification and mapping of 1:50,000 vegetation type map in mountain areas.Terrain constraint factors with mountain altitudinal belt information can be generated by mountain altitudinal belts and 1:10,000 Digital Surface Model(DSM)data of Taibai Mountain.Combining the terrain constraint factors with multi-temporal and high-resolution remote sensing data,ground survey data and previous small-scale vegetation type map data,the vegetation types at all levels can be extracted effectively.2)The basic remote sensing interpretation and mapping process for typical mountains is interpretation of vegetation type-groups→interpretation of vegetation formation groups,formations and subformations→interpretation and classification of vegetation types&subtypes,which is a combination method of top-down method and bottom-up method,not the top-down or the bottom-up classification according to the level of mapping units.The results of this study provide a demonstration and scientific basis for the compilation of large and medium scale vegetation type maps. 展开更多
关键词 vegetation type map high resolution remote sensing data mountain altitudinal belts remote sensing interpretation Taibai Mountain
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部