期刊文献+
共找到1,436篇文章
< 1 2 72 >
每页显示 20 50 100
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
1
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
COUPLING VIBRATION OF VEHICLE-BRIDGE SYSTEM
2
作者 陈炎 黄小清 马友发 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期390-395,共6页
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w... By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle. 展开更多
关键词 coupling vibration dynamic response RESONANCE vehicle-bridge system critical speed of vehicle
下载PDF
Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge 被引量:10
3
作者 张明金 李永乐 汪斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1264-1272,共9页
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament... In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind. 展开更多
关键词 wind-vehicle-bridge system coupled vibration long-span cable-stayed bridge fundamental factors
下载PDF
Reinforcement Effect Evaluation on Dynamic Characteristics of an Arch Bridge Based on Vehicle-Bridge Coupled Vibration Analysis
4
作者 Yanbin Tan Xingwen He +3 位作者 Lei Shi Shi Zheng Zhe Zhang Xinshan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1041-1061,共21页
To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite ... To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established.Then,the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language.This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle.The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program.Then,three reinforcement schemes for the bridge(Addition of longitudinal beams,Reinforcement of bridge decks,and Replacement of suspenders)were proposed and numerically simulated,and the vibration reduction effects of the three schemes were evaluated based on the numerical results to find effective ones.It is confirmed that the reinforcement scheme of Addition of longitudinal beams shows the most significant vibration reduction effect.It is recommended in the engineering practice that the combination of the reinforcement schemes of Addition of longitudinal beams and Replacement of bridge deck can be used to solve the excessive vibration problem. 展开更多
关键词 Arch bridge vehicle-bridge coupled vibration REINFORCEMENT numerical evaluation
下载PDF
Coupled Vibration Analysis of Vehicle-Bridge System Based on Multi-Boby Dynamics
5
作者 Deshan Shan Shengai Cui Zhen Huang 《Journal of Transportation Technologies》 2013年第2期1-6,共6页
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m... For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition. 展开更多
关键词 CABLE-STAYED bridge coupled vibration CO-SIMULATION Multi-Body System DYNAMICS FINITE ELEMENT Method
下载PDF
Coupled Vibration of Long-Span Railway Curved Girder Bridges and Vehicles
6
作者 单德山 李乔 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期62-69,共8页
The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle ~vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities... The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle ~vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities of the track are generated from a power spectral density function under the given track condition. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. Then based on these models, the coupled equations of motion are solved by applying the time-integration and iteration techniques to the coupled system. The proposed formulation and the associated computer program are then applied to a real curved girder bridge. The dynamic responses of the bridge-vehicle system and the derailments and offload factors related to the riding and running safeties of vehicles are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts. 展开更多
关键词 Corpled vibration Curved girder bridge vehicle
下载PDF
Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration 被引量:16
7
作者 Chul-Young Kim Dae-Sung Jung +2 位作者 Nam-Sik Kim Soon-Duck Kwon Maria Q.Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期109-116,共8页
Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of... Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%. 展开更多
关键词 ambient vibration test traffic induced vibration vehicle mass suspension bridge short-span bridge dynamic characteristics natural frequency
下载PDF
A vertical coupling dynamic analysis method and engineering application of vehicle–track–substructure based on forced vibration
8
作者 Guolong Li Mangmang Gao +2 位作者 Jingjing Yang Yunlu Wang Xueming Cao 《Railway Sciences》 2022年第2期224-240,共17页
Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track a... Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.Design/methodology/approach–The track and substructure are decomposed into the rail subsystem and substructure subsystem,in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener.The rail is treated as a continuous beam with elastic discrete point supports,and spring-damping elements are used to simulate the constraints between rail and fastener.Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system,while the external load is used to deal with the reverse effect.The fastener failure is simulated with the methods that cancel the forced vibration transmission,namely take no account of the substructure–rail interaction at that position.Findings–The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method.Local fastener failure will slightly affect the vibration of substructure and carbody,but it will significantly intensify the vibration response between wheel and rail.The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value,respectively,under the train speed of 350 km$h1.At the same time,the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%,respectively,from the normal value.Originality/value–This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system. 展开更多
关键词 vehicle–track–substructure coupling dynamic analysis Forced vibration vibration response FASTENER FAILURE
下载PDF
Vehicle-Bridge Interaction Simulation and Damage Identification of a Bridge Using Responses Measured in a Passing Vehicle by Empirical Mode Decomposition Method
9
作者 Shohel Rana Md. Rifat Zaman +2 位作者 Md. Ibrahim Islam Ifty Seyedali Mirmotalebi Tahsin Tareque 《Open Journal of Civil Engineering》 2023年第4期742-755,共14页
To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic character... To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study. 展开更多
关键词 Structural Health Monitoring vibration-Based Damage Identification vehicle-bridge Interaction Finite Element Model Empirical Mode Decomposition
下载PDF
Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge 被引量:4
10
作者 Lipeng An Dejian Li +1 位作者 Peng Yu Peng Yuan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第4期186-194,共9页
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac... To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system. 展开更多
关键词 Long-span continuous bridge vehicle-bridge coupled system Dynamic responsevehicle impact coefficient vibration comfort
下载PDF
Influence of vehicle-road coupled vibration on tire adhesion based on nonlinear foundation 被引量:5
11
作者 Junning ZHANG Shaopu YANG +2 位作者 Shaohua LI Yongjie LU Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期607-624,共18页
The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise ... The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise description of tire adhesion affects the accuracy of dynamic vehicle responses.However,in most models,only road roughness is considered,and the pavement vibration caused by vehicle-road interaction is ignored.In this paper,a vehicle is simplified as a spring-mass-damper oscillator,and the vehicle-pavement system is modeled as a vehicle moving along an Euler-Bernoulli beam with finite length on a nonlinear foundation.The road roughness is considered as a sine wave,and the shear stress is ignored on the pavement.According to the contact form between tire and road,the LuGre tire model is established to calculate the tire adhesion force.The Galerkin method is used to simplify the partial differential equations of beam vibration into finite ordinary differential equations.A product-to-sum formula and a Dirac delt function are used to deal with the nonlinear term caused by the nonlinear foundation,which realizes the fast and accurate calculation of super-high dimensional nonlinear ordinary differential equations.In addition,the dynamic responses between the coupled system and the traditional uncoupled system are compared with each other.The obtained results provide an important theoretical basis for research on the influence of vehicle-road coupled vibration on tire adhesion. 展开更多
关键词 vehicle system dynamics vehicle-road coupled vibration LuGre tire model Galerkin method
下载PDF
Experimental investigation on vibration characteristics of the medium-low-speed maglev vehicle-turnout coupled system 被引量:3
12
作者 Miao Li Dinggang Gao +3 位作者 Tie Li Shihui Luo Weihua Ma Xiaohao Chen 《Railway Engineering Science》 2022年第2期242-261,共20页
The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify t... The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems. 展开更多
关键词 Medium–low-speed maglev vehicle–turnout coupled system Field test vibration characteristics Ride quality
下载PDF
Natural Frequency of the Bridge—Vehicle Coupled System Considering Uniform Distributed Moving Load
13
作者 Zhang Jun Gou Mingkang Liang Chuan 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期185-189,共5页
Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant sect... Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles. 展开更多
关键词 bridge-vehicle coupled system frequency analysis UNIFORM DISTRIBUTED MOVING load analytical model
下载PDF
Seismic response analysis of road vehicle-bridge system for continuous rigid frame bridges with high piers 被引量:10
14
作者 Li Yongle Chen Ning +1 位作者 Zhao Kai Liao Haili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期593-602,共10页
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se... The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration. 展开更多
关键词 vehicle-bridge system coupling vibration seismic effects SAFETY dynamic response
下载PDF
Impact coefficient and reliability of mid-span continuous beam bridge under action of extra heavy vehicle with low speed 被引量:11
15
作者 刘波 王有志 +1 位作者 胡朋 袁泉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1510-1520,共11页
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and... To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport. 展开更多
关键词 continuous beam bridge extra heavy vehicle coupled vibration impact coefficient reliability
下载PDF
Flight Dynamic Analysis of Hypersonic Vehicle Considering Liquid-Solid Coupling 被引量:1
16
作者 徐晓东 黄一敏 蔡晓斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期81-88,共8页
With the liquid propellant making up 60%—70% of the takeoff weight of the hypersonic vehicle,the dynamic load caused by great propellant sloshing interacts with the flexible structure of the aircraft.Therefore,the dy... With the liquid propellant making up 60%—70% of the takeoff weight of the hypersonic vehicle,the dynamic load caused by great propellant sloshing interacts with the flexible structure of the aircraft.Therefore,the dynamic model displays characteristics of strong coupling with structure/control and nonlinearity.Based on the sloshing mass dynamic simplified as a spring-mass-damping model,a rigid-flexible-sloshing model is constructed.Moreover,the effect on the dynamic performance of the coupled model is analyzed with changing frequency and damping.The results show that propellant sloshing dynamics significantly affects the rigid body motion modes,especially flexible mode and short mode.The right half plane pole(RHP)moves far from the imaginary axis with the consumption of the propellant.The flexible mode attenuates with the increase of the sloshing damping,and the coupling becomes stronger when sloshing frequency is close to the short mode frequency or the flexible frequency of the beam. 展开更多
关键词 hypersonic vehicles liquid propellant sloshing coupling model structure vibration
下载PDF
Dynamic Characteristics of Metro Vehicle under Thermal Deformation of Long-Span Cable-Stayed Bridge
17
作者 Quanming Long Qianhua Pu +2 位作者 Wenhao Zhou Li Zhu Zhaowei Chen 《World Journal of Engineering and Technology》 2022年第3期656-677,共22页
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic... In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB. 展开更多
关键词 vehicle Engineering vehicle Rail bridge coupling vibration LSCSB Temperature Load Dynamic Characteristics
下载PDF
Research status and prospect of wind-vehicle-bridge coupling vibration system 被引量:3
18
作者 Wanshui Han Xiaodong Liu +3 位作者 Xuelian Guo Shizhi Chen Gan Yang Huanju Liu 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2022年第3期319-338,共20页
To promote and develop the theoretical basis and application of the wind-vehicle-bridge coupling vibration system,the corresponding research status and prospects are reviewed and discussed from five aspects,i.e.,the a... To promote and develop the theoretical basis and application of the wind-vehicle-bridge coupling vibration system,the corresponding research status and prospects are reviewed and discussed from five aspects,i.e.,the analytical framework,the aerodynamic interference,the evaluation criteria,the design loads of long-span bridge and the double-deck railcum-road bridge.The refining process of analysis system is reviewed from the aspects of simulation wind load,vehicle load and bridge structure,and the corresponding coupling relationship.For aerodynamic interference,the development process is summarized from the simulative precision of the elements(wind,vehicle and bridge),the load cases and the object of interference.For evaluation criteria,the corresponding development course is summarized from the certain evaluation method to uncertain one.For long-span bridge design load,the wind and vehicle loads are reviewed and summarized from current multinational codes and theoretical research.For double-deck rail-cum-road bridge,the mechanism of multi-element coupling relationship and corresponding aerodynamic interference are both reviewed.By comprehensive review and summary,the analytical framework is in the process from simplification to refinement.The simulation and consideration of the objects of structural interference gradually become complex.The corresponding simulation theory,wind tunnel scale,test equipment and technology are the key factors to limit its development.For systematic evaluation of vehicle and bridge,the structural and systemic security are the basis of the evaluation,and the auxiliary components and functional evaluation need to be paid more attention.The evaluation criterion will be developed from certain method to reliability assessment.For design load of long-span bridge,the vehicle load is gradually transferred from the simple application of the design load of small-medium span bridge into a complex model considering the load characteristics.For double-deck rail-cum-road bridge,the basic theory and experimental study on coupling mechanism and aerodynamic interference need to be developed. 展开更多
关键词 bridge engineering Wind-vehicle-bridge coupling vibration Aerodynamic interference Double-deck rail-cum-road bridge Design loads of long-span bridges Evaluation rule
原文传递
Vehicle-bridge coupled vibrations in different types of cable stayed bridges 被引量:3
19
作者 Lingbo WANG Peiwen JIANG +3 位作者 Zhentao HUI Yinping MA Kai LIU Xin KANG 《Frontiers of Structural and Civil Engineering》 EI CSCD 2016年第1期81-92,共12页
Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The br... Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The bridge model and vehicle model were independently built which have no internal relationship in the ANSYS. The vehicle-bridge coupled vibration relationship was obtained by using the APDL program which subsequently imposed on the vehicle and bridge models during the numerical analysis. The proposed model was validated through a field measurements and literature data. The judging method, possibility, and criterion of the vehicle-bridge resonance (coupled vibrations) of cable stayed bridges (both the floating system and half floating system) under traffic flows were presented. The results indicated that the interval time between vehicles is the main influence factor on the resonance excitation frequency under the condition of equally spaced traffic flows. Compared to other types of cable stayed bridges, the floating bridge system has relatively high possibility to cause vehicle-bridge resonance. 展开更多
关键词 vehicle-bridge coupled vibration cable stayed bridge resonances of vehicle-bridge system
原文传递
Dynamic performance analysis of a seismically isolated bridge under braking force 被引量:1
20
作者 Yu Fang Wen Liuhan·heisha +1 位作者 Zhou Fulin Ye Lieping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期35-42,共8页
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is establi... In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force. 展开更多
关键词 seismically isolated bridge braking force coupling vibration quadratic discrete dynamic analysis
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部