This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separa...This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separate-type treatment approach.The finite-time(FT)DP control is fulfilled by a predefined FT function on the basis of a time-based generator(TBG).Under the dynamic surface control together with the TBG design framework,the convergence time and control accuracy of the DP system can be determined by the designer offline.Meanwhile,the virtual derivation and computational burden problems are dissolved by using a first-order filter and virtual parameter learning technique.To reduce mechanical wear,an event-triggering protocol between the control law and the actuator is built to reduce the operating frequency of the actuator.An event-triggered neuroadaptive PPFT control scheme is presented for DP vessels.The stability of the closed-loop DP control systems is validated via the Lyapunov theorem.Approach efficiency is confirmed by numerical examples.展开更多
基金supported in part by the National Natural Science Foundation of China(52022073,62073251 and 52261160383)in part by the Excellent Youth Foundation of Hubei Scientific Committee(2020CFA055)+4 种基金in part by the Natural Science Foundation of Zhejiang Province(LY21E090005)in part by the Innovation Research Team Project of the Hainan Natural Science Foundation(722CXTD518)in part by the Knowledge Innovation Program of Wuhan-Basic Research(2022010801010181)in part by the Science and Technology Project of Zhoushan(2022C41006)in part by the Hubei Key Laboratory of Inland Shipping Technology(NHHY2020004).
文摘This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separate-type treatment approach.The finite-time(FT)DP control is fulfilled by a predefined FT function on the basis of a time-based generator(TBG).Under the dynamic surface control together with the TBG design framework,the convergence time and control accuracy of the DP system can be determined by the designer offline.Meanwhile,the virtual derivation and computational burden problems are dissolved by using a first-order filter and virtual parameter learning technique.To reduce mechanical wear,an event-triggering protocol between the control law and the actuator is built to reduce the operating frequency of the actuator.An event-triggered neuroadaptive PPFT control scheme is presented for DP vessels.The stability of the closed-loop DP control systems is validated via the Lyapunov theorem.Approach efficiency is confirmed by numerical examples.