期刊文献+
共找到6,085篇文章
< 1 2 250 >
每页显示 20 50 100
Natural consolidation characteristics of viscous debris flow deposition 被引量:2
1
作者 HE Song-Tang WANG Dao-Jie +2 位作者 CHEN Shun ZHANG Shu-Juan CHANG Shi-Qiu 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1723-1734,共12页
Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive under... Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive understanding about the entire consolidation process and focused on exploring pore water pressure and volumetric water content variations of the deposit body during natural consolidation under different conditions taking the viscous debris flow mass as a study subject and by flume experiments. The results indicate that, as the color of the debris changed from initial dark green to grayish-white color, the initial deposit thickness declined by 3% and 2.8% over a permeable and impermeable sand bed, respectively. A positive correlation was observed between pore water pressure and depth in the deposit for both scenarios, with deeper depths being related to greater pore water pressure. For the permeable environment, the average dissipation rate of pore water pressure measured at depths of 0.10 m and 0.05 m were 0.0172 Pa/d and 0.0144 Pa/d, respectively, showing a positivechanging trend with increasing depth. Under impermeable conditions, the average dissipation rates at different depths were similar, while the volumetric water content in the deposit had a positive correlation with depth. The reduction of water content in the deposit accelerated with depth under impermeable sand bed boundary conditions, but was not considerably correlated with depth under permeable sand bed boundary conditions. However, the amount of discharged water from the deposit was greater and consolidation occurred faster in permeable conditions. This indicates that the permeability of the boundary sand bed has a significant impact on the progress of consolidation. This research demonstrates that pore water and pressure dissipations are present during the entire viscous debris consolidation process. Contrasting with dilute flows, pore pressure dissipation in viscous flows cannot be completed in a matter of minutes or even hours, requiring longer completion time — 3 to 5 days and even more. Additionally, the dissipation of the pore water pressure lagged the reduction of the water content. During the experiment, the dissipation rate fluctuated substantially, indicating a close relationship betweenthe dissipation process and the physical properties of broadly graded soils. 展开更多
关键词 viscous debris flow Natural consolidation Dissipation of pore water pressure Volumetric Water content Flume experiment
原文传递
The Optimal Cross-section Design of the “Trapezoid-V” Shaped Drainage Canal of Viscous Debris Flow 被引量:8
2
作者 YOU Yong 《Journal of Mountain Science》 SCIE CSCD 2011年第1期103-107,共5页
Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow dr... Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow. 展开更多
关键词 粘性泥石流 截面设计 排导槽 梯形 配置参数 泥石流灾害 截面尺寸 排水能力
原文传递
Planar Velocity Distribution of Viscous Debris Flow at Jiangjia Ravine,Yunnan,China:A Field Measurement Using Two Radar Velocimeters 被引量:5
3
作者 FU Xudong WANG Guangqian +1 位作者 KANG Zhicheng FEI Xiangjun 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期583-587,共5页
Characteristics of planar velocity distribution of vis-cous debris flow were analyzed using the measured data at Jiangjia Ravine,Yunnan,China. The velocity data were measured through using two radar velocimeters. The ... Characteristics of planar velocity distribution of vis-cous debris flow were analyzed using the measured data at Jiangjia Ravine,Yunnan,China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's(2004) relation-ship,which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient,K,defined by the ratio of the mean velocity to the maximum ve-locity,ranges from 0.2 to 0.6. Kang et al's(2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship. 展开更多
关键词 泥石流 平面速度测量 速率系数 中国 云南 雷达速度计
下载PDF
Gravel Accumulation in Deposits of Viscous Debris Flows with Hyper-concentration 被引量:2
4
作者 WANG Yuyi TAN Rongzhi +1 位作者 JAN Chyandeng TIAN Bing 《Journal of Mountain Science》 SCIE CSCD 2009年第1期88-95,共8页
According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types:high-viscous, viscous, and sub-viscous debris flows.Distinct formation mechanism of... According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types:high-viscous, viscous, and sub-viscous debris flows.Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio.This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied.The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows. 展开更多
关键词 粘性泥石流 浓度 存款 积累 超线程 砾石 粘性流动 观测数据
原文传递
Efficiency of Slit Dam Prevention against Non-Viscous Debris Flow 被引量:4
5
作者 HAN Wenbing OU Guoqiang 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期865-869,共5页
This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: ① there are three kinds of blocking type: Total-blocking... This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: ① there are three kinds of blocking type: Total-blocking, opening and part-blocking. The blocking conditions of slit dam are closely link to b/d_ max (the ratio of slit width to maximum diameter of solid matter), as b/d_ max is less than 0.739, the slit dam is total- blocking; and b/d_ max is more than 1.478, the slit dam will be opening; whereas b/d_ max ranges from 0.739 to 1.478, the slit dam is part-blocking. ② Variation of the mean density passing through slit dam is the most obvious as b/d_ max ranges from 0.739 to 1.232. ③ According to experimental results, slit dams have been shown to be effective in reducing debris flow density while slit density ∑b/B (B is slit dam width) ranges from 0.2 to 0.5. 展开更多
关键词 泥石流 缝隙坝 阻塞比 地质灾害
下载PDF
Characteristics of viscous debris flow in a drainage channel with an energy dissipation structure 被引量:4
6
作者 CHEN Jian-gang CHEN Xiao-qing +1 位作者 CHEN Hua-yong ZHAO Wan-yu 《Journal of Mountain Science》 SCIE CSCD 2016年第2期223-233,共11页
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental... A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0). 展开更多
关键词 粘性泥石流 减震结构 排水沟 泥石流特征 消能 能量耗散率 耗散结构 结构长度
原文传递
Interaction Mechanisms between Natural Debris Flow and Rigid Barrier Deflectors:A New Perspective for Rational Design and Optimal Arrangement
7
作者 Yu Huang Beilei Liu +1 位作者 Dianlei Feng Hao Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1679-1699,共21页
Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflector... Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters. 展开更多
关键词 Rigid barrier deflectors deflector angle single-barrier dual-barrier arrangements viscous debris flow over-spilling delta-plus-SPH
下载PDF
Modelling of debris-flow susceptibility and propagation: a case study from Northwest Himalaya
8
作者 Hamza DAUD Javed Iqbal TANOLI +5 位作者 Sardar Muhammad ASIF Muhammad QASIM Muhammad ALI Junaid KHAN Zahid Imran BHATTI Ishtiaq Ahmad Khan JADOON 《Journal of Mountain Science》 SCIE CSCD 2024年第1期200-217,共18页
The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are... The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure. 展开更多
关键词 North Pakistan debris flow flow-R Propagation Susceptibility mapping debris-flow inventory Weighted Overlay Method
原文传递
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
9
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis debris flow susceptibility
原文传递
Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin,China
10
作者 ZHOU Yonghao HU Xiewen +6 位作者 XI Chuanjie WEN Hong CAO Xichao JIN Tao ZHOU Ruichen ZHANG Yu GONG Xueqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1231-1245,共15页
Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited applica... Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited application because of the uncertainties in identifying negative samples.The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows(GDFs)and is characterized by a prominent landform featuring deep gullies.Considering the limitations of the ML model,we developed and compared two combined statistical models(FA-WE and FA-IC)based on factor analysis(FA),weight of evidence(WE),and the information content(IC)method.The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation.The results show that the FA-IC model has the best performance.The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream,on both sides of the valley in the middle and downstream of the Parlung Tsangpo River,and in the narrow valley section of each tributary.These areas encompass 86 gullies and are characterized as"narrow and steep". 展开更多
关键词 Parlung Tsangpo Basin Glacial debris flow Factor analysis Susceptibility mapping Weight of evidence Information content method.
原文传递
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
11
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
Particle support mechanism in viscous debris flows at Jiangjia Ravine,Yunnan,China 被引量:3
12
作者 王裕宜 费祥俊 《Science China(Technological Sciences)》 SCIE EI CAS 1999年第5期550-555,共6页
Hyperconcentrated viscous debris flows can move rapidly on low-gradient ravine under shear, because they have highly excessive pore pressure. The relationship between excessive pore-pressure (P<sub>e</sub>... Hyperconcentrated viscous debris flows can move rapidly on low-gradient ravine under shear, because they have highly excessive pore pressure. The relationship between excessive pore-pressure (P<sub>e</sub>) and volume concentration (C<sub>vt</sub>) in viscous debris flows, i.e. P<sub>e</sub>=2 494.76C<sub>vt</sub><sup>0.94</sup>, is quantitatively shown; the correlation coefficient γ=0.9671, 95% confidence interval is 0.9053【ρ【0.9937. About 92.29% of all grains (by weight) is supported by excessive pore pressure. 展开更多
关键词 debris flow PARTICLE SUPPORT EXCESSIVE pore-pressure.
原文传递
Evaluation of the submarine debris-flow hazard risks to planned subsea pipeline systems: a case study in the Qiongdongnan Basin, South China Sea
13
作者 Mingquan Huang Xuesheng Qian +1 位作者 Jingping Xu Xuecheng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期139-153,共15页
The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a c... The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a case study on evaluating the debris-flow hazard risks to the planned pipeline systems in this region.We used a numerical model to perform simulations to support this quantitative evaluation.First,one relict failure interpreted across the development site was simulated.The back-analysis modeling was used to validate the applicability of the rheological parameters.Then,this model was applied to forecast the runout behaviors of future debris flows originating from the unstable upslope regions considered to be the most critical to the pipeline systems surrounding the Manifolds A and B.The model results showed that the potential debris-flow hazard risks rely on the location of structures and the selection of rheological parameters.For the Manifold B and connected pipeline systems,because of their remote distances away from unstable canyon flanks,the potential debris flows impose few risks.However,the pipeline systems around the Manifold A are exposed to significant hazard risks from future debris flows with selected rheological parameters.These results are beneficial for the design of a more resilient pipeline route in consideration of future debris-flow hazard risks. 展开更多
关键词 submarine debris flow pipeline MANIFOLD hazard evaluation route optimization Qiongdongnan Basin
下载PDF
Impact of glacier changes and permafrost distribution on debris flows in Badswat and Shishkat catchments,Northern Pakistan
14
作者 HASSAN Wajid SU Feng-huan +7 位作者 LIU Wei-ming HASSAN Javed HASSAN Muzammil BAZAI Nazir Ahmed WANG Hao YANG Ze-wen ALI Muzaffar CASTELLANOS Daniel Garcia 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3687-3702,共16页
Knowledge of glacier changes and associated hazards is of great importance for the safety consideration of the population and infrastructure in the mountainous regions of Upper Indus Basin(UIB).In this study,we assess... Knowledge of glacier changes and associated hazards is of great importance for the safety consideration of the population and infrastructure in the mountainous regions of Upper Indus Basin(UIB).In this study,we assessed the variations in glacier velocity,glacier surface elevation change,meteorological conditions,and permafrost distribution in Badswat and Shishkat catchments located in UIB to access the potential impact on the occurrence of debris flow in both catchments.We find that the glacier surface velocity increased during the debris flow event in the Badswat catchment and the mean daily temperature was 3.7℃to 3.9℃higher in most of the locations.The enhanced glacier surface elevation lowering period coincide with the rise in temperature during spring and autumn months between 2015 to 2019 in Badswat catchment.The source region of debris flow falls within the lower boundary of permafrost occurrence zone and lies below the 0℃isotherm during late spring and summer months.In Shishkat catchment the 0℃isotherm reaches above the debris flow source area during August and the glacier do not show any significant variations in velocity and surface elevation change.The debris flow source area is adjacent to the slow-moving rock glacier in Shishkat catchment while in Badswat catchment the debris flow initiated from the former glacier moraine.Both catchments are largely glacierized and thus sensitive to changes in climatic conditions and changes in the cryosphere response possess significant threats to the population downstream.Continuous monitoring of cryosphere-climate change in the region can contribute toward the improvement of disaster risk reduction and mitigation policies. 展开更多
关键词 Cryosphere change Climate change debris flow Remote sensing PERMAFROST Cryosphere hazard
原文传递
Characteristics of debris flow impact on a double-row slit dam
15
作者 WANG Zhuang LIU Dao-chuan +6 位作者 YOU Yong LYU Xiao-bo LIU Jin-feng ZHAO Wan-yu SUN Hao WANG Dong-wei LIU Yang 《Journal of Mountain Science》 SCIE CSCD 2023年第2期415-428,共14页
To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the re... To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the redistribution of an impact load after structural regulation is unclear.In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam,and carried out a verification experiment on the debris flow impact.The calculation model considers the influence of the debris flow properties,dam arrangement and pile material.The results show that the impact force of the debris flow is obviously affected by the bulk density.When the bulk density is 21 kg/m^(3),the maximum impact force on the pile dam is 1.15 times that when the bulk density is 15 kg/m^(3),but the time it takes for the debris flow to pass through the dam body is reduced by 60%.The larger the relative pile spacing,the more sufficient the flow space and the lower the maximum impact force.The maximum impact force of relative pile spacing of 0.8 is 12%less than that of elative pile spacing of 0.5.The horizontal distribution of the impact force in the mud depth range is parabolic.The maximum impact force on the centre pier is 1.3 times that of a side pier,and the maximum impact force on the dam body appears at the top of the mud depth range.From the vertical distribution of the impact force,the maximum impact force at the highest mud mark is approximately 70%of that of the bottom.With the increase in the relative pile spacing,the longitudinal maximum impact force distribution first decreases and then increases. 展开更多
关键词 debris flow force Slit dam FLUCTUATIONS Flume model test
原文传递
Impact pressure of debris flow on beam dam
16
作者 WANG Dong-wei YOU Yong +2 位作者 LIU Jin-feng SUN Hao WANG Zhuang 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2822-2834,共13页
The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow c... The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow control system,has received less attention in research on the impact process of debris flow and check dams compared to solid check dams.Additionally,the estimation of impact pressure in debris flow primarily considers debris flow characteristics,without taking into account the influence of geometric characteristics of the transmission structure.To better understand the impact process of debris flow on beam dams,a series of small-scale debris flow impact tests were conducted in a model flume.Key parameters,including velocity,depth,and impact pressure,were measured.The results show that the maximum impact pressure of debris flow is affected by both the characteristics of the debris flow and the relative opening size of the beam dam.Due to flow and edge occlusion in the middle of the beam dam,the discharge of debris flow is enhanced,resulting in a longer impact process and higher maximum impact pressure.Based on these findings,a calculation model of the maximum impact pressure of debris flow at the midpoint of the middle beam is proposed,which can be used to estimate the impact of debris flow on the discharge part of the beam dam. 展开更多
关键词 debris flow Beam dam Impact pressure Relative opening size Calculation model
原文传递
Modeling of breaching parameters for debris flow dams
17
作者 RUAN He-chun CHEN Hua-yong +8 位作者 CHEN Xiao-qing ZHAO Wan-yu CHEN Jian-gang WANG Tao JIANG Yao Wang Xi-an Li Xiang-ning LI Xiao YU Yun-han 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2835-2851,共17页
The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal comp... The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases. 展开更多
关键词 debris flow dams Overtopping failure Breaching g parameters Peak discharge Flume experiment
原文传递
Morphodynamics and sediment connectivity index in an unmanaged,debris-flow prone catchment:a through time perspective
18
作者 Loris TORRESANI Guillaume PITON Vincenzo D’AGOSTINO 《Journal of Mountain Science》 SCIE CSCD 2023年第4期891-910,共20页
Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a prior... Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a priority in hazard assessment and mitigation.In this context,the sediment Connectivity Index(IC)enables to analyse the existing linkage between sediment sources and the selected target(channel network or catchment outlet).The IC is a grid-based index that allows fast computation of sediment connectivity based on landscape information derived from a single Digital Terrain Model(DTM).The index computation is based on the log-ratio between an upslope and a downslope component,including information about drainage area,slope,terrain roughness,and distance to the analysis target(e.g.outlet).The output is a map that highlights the degree of structural connectivity of sediment pathways over analysed catchments.Until now,these maps are however rarely used to help defining debris-flow hazard maps,notably due to a lack of guidelines to interpret the IC spatial distribution.This paper proposes an exploitation procedure along profiles to extract more information from the analysis of mapped IC values.The methodology relies on the analysis of the IC and its component variables along the main channel profile,integrated with information about sediment budgeting derived from Difference of DEMs(DoD).The study of connectivity was applied in the unmanaged sub-catchment(without torrent control works)of the Rio Soial(Autonomous Province of Trento–NE Italy)to understanding the geomorphic evolution of the area after five debris flows(in ten years)and the related changes of sediment connectivity.Using a recent DTM as validation,we demonstrated how an IC analysis over the older DTM can help predicting geomorphic changes and associated hazards.The results show an IC aptitude to capture geomorphic trajectories,anticipate debris flow deposits in a specific channel location,and depict preferential routing pathways. 展开更多
关键词 Sediment Connectivity Index debris flow Hazard assessment Digital Elevation Model Geomorphic evolution DEMs of Difference
原文传递
Mean Velocity Estimation of Viscous Debris Flows 被引量:1
19
作者 Hongjuan Yang Fangqiang Wei Kaiheng Hu 《Journal of Earth Science》 SCIE CAS CSCD 2014年第4期771-778,共8页
The mean velocity estimation of debris flows, especially viscous debris flows, is an important part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations fo... The mean velocity estimation of debris flows, especially viscous debris flows, is an important part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were reviewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are turbulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formulas can give reasonable estimate of the mean velocity of the viscous debris flow. 展开更多
关键词 粘性泥石流 速度估计 推算方法 泥石流灾害 控制结构设计 理论公式 平均流速 流动力学
原文传递
Numerical Simulation of Viscous Flow Around a Rolling Cylinder with Ship-Like Section 被引量:9
20
《China Ocean Engineering》 SCIE EI 1995年第1期9-18,共10页
Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the co... Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects. 展开更多
关键词 viscous flow numerical simulation TWO-DIMENSIONAL CYLINDER ROLLING motion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部