This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspon...This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras.As application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra.展开更多
In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2...In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.展开更多
The Whitney immersion theorem asserts that every smooth n-dimensional manifold can be immersed in R2n-1, in particular, smooth surfaces can be immersed in R3, and for embeddings the ambient dimension needs to go up by...The Whitney immersion theorem asserts that every smooth n-dimensional manifold can be immersed in R2n-1, in particular, smooth surfaces can be immersed in R3, and for embeddings the ambient dimension needs to go up by 1. Immersions or embeddings carry both intrinsic and extrinsic information of manifolds, and the latter determines how the manifold fits into the Euclidean space. The key geometric quantity to capture the extrinsic geometry is the second fundamental form.展开更多
For any complex parameters a, b, let W(a, b) be the Lie algebra with basis {Li, Hi|i ∈ Z} and relations [Li,Lj] = (j - i)Li+j, [Li,Hj] = (a + j + bi)Hi+j and [Hi, Hi] = 0. In this paper, we construct the W...For any complex parameters a, b, let W(a, b) be the Lie algebra with basis {Li, Hi|i ∈ Z} and relations [Li,Lj] = (j - i)Li+j, [Li,Hj] = (a + j + bi)Hi+j and [Hi, Hi] = 0. In this paper, we construct the W(a, b) conformal algebra for some a, b and its conformal module of rank one.展开更多
On Hom-Lie algebras and superalgebras,we introduce the notions of biderivations and linear commuting maps,and compute them for some typical Hom-Lie algebras and superalgebras,including the q-deformed W(2,2)algebra,the...On Hom-Lie algebras and superalgebras,we introduce the notions of biderivations and linear commuting maps,and compute them for some typical Hom-Lie algebras and superalgebras,including the q-deformed W(2,2)algebra,the q-deformed Witt algebra and superalgebra.展开更多
We study conformal biderivations of a Lie conformal algebra.First,we give the definition of a conformal biderivation.Next,we determine the conformal biderivations of loop W(a,b)Lie conformal algebra,loop Virasoro Lie ...We study conformal biderivations of a Lie conformal algebra.First,we give the definition of a conformal biderivation.Next,we determine the conformal biderivations of loop W(a,b)Lie conformal algebra,loop Virasoro Lie conformal algebra,and Virasoro Lie conformal algebra.Especially,all conformal biderivations on Virasoro Lie conformal algebra are inner conformal biderivations.展开更多
We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generali...We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generalized super Bremner identity.For the infinite conserved operators in the supersymmetric Landau problem,we derive the super W_(1+∞) n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases,respectively.Moreover the super W_(1+∞) sub-2n-algebra is also given.展开更多
基金Supported by China Scholarship Council(Grant No.201206125047)China Postdoctoral Science Foundation Funded Project(Grant No.2012M520715)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201462)
文摘This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras.As application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra.
基金Supported by NSF grant of China and NSF grant of Shandong Province(Grant Nos.11431010,11671056,ZR2013AL013 and ZR2014AL001)
文摘In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.
文摘The Whitney immersion theorem asserts that every smooth n-dimensional manifold can be immersed in R2n-1, in particular, smooth surfaces can be immersed in R3, and for embeddings the ambient dimension needs to go up by 1. Immersions or embeddings carry both intrinsic and extrinsic information of manifolds, and the latter determines how the manifold fits into the Euclidean space. The key geometric quantity to capture the extrinsic geometry is the second fundamental form.
文摘For any complex parameters a, b, let W(a, b) be the Lie algebra with basis {Li, Hi|i ∈ Z} and relations [Li,Lj] = (j - i)Li+j, [Li,Hj] = (a + j + bi)Hi+j and [Hi, Hi] = 0. In this paper, we construct the W(a, b) conformal algebra for some a, b and its conformal module of rank one.
基金Supported by National Natural Science Foundation grants of China(Grant No.11301109)。
文摘On Hom-Lie algebras and superalgebras,we introduce the notions of biderivations and linear commuting maps,and compute them for some typical Hom-Lie algebras and superalgebras,including the q-deformed W(2,2)algebra,the q-deformed Witt algebra and superalgebra.
基金supported by the National Natural Science Foundation of China(Grant Nos.11771069,12071405,11301109)China Postdoctoral Science Foundation(2020M682272)the Natural Science Foundation of Hennan Province(212300410120).
文摘We study conformal biderivations of a Lie conformal algebra.First,we give the definition of a conformal biderivation.Next,we determine the conformal biderivations of loop W(a,b)Lie conformal algebra,loop Virasoro Lie conformal algebra,and Virasoro Lie conformal algebra.Especially,all conformal biderivations on Virasoro Lie conformal algebra are inner conformal biderivations.
基金Supported by National Natural Science Foundation of China under Grant Nos.11375119,11475116,and 11547101
文摘We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generalized super Bremner identity.For the infinite conserved operators in the supersymmetric Landau problem,we derive the super W_(1+∞) n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases,respectively.Moreover the super W_(1+∞) sub-2n-algebra is also given.