The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an For...The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.展开更多
Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (P...Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.展开更多
More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish, Through a series of exper...More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish, Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth), aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.展开更多
A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating ...A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.展开更多
The Tianshui Experimental Site of Soil and Water Conservation was set up in 1942.Then the first construction publicized the thinking of soil and water conservation,and popularized the technologies of soil and water co...The Tianshui Experimental Site of Soil and Water Conservation was set up in 1942.Then the first construction publicized the thinking of soil and water conservation,and popularized the technologies of soil and water conservation and related plants.Their efforts established the foundation of the science of soil and water conservation with the first high-tech and high quality R&D team,and pushed the research of soil and water conservation building on the stage of systematization.All of this provided rare good scientific data and theoretical support for the soil and water conservation and the development of the regional economy in Northwest China.展开更多
Experimental studies are carried out with slender bodies vertically exiting out of the water using a high-speed camera. The mechanisms for the formation, development, and collapse of the cavity around the slender body...Experimental studies are carried out with slender bodies vertically exiting out of the water using a high-speed camera. The mechanisms for the formation, development, and collapse of the cavity around the slender body are explored. The dynamic characteristics of the shoulder cavity and the trail cavity during the water-exit of low-speed bodies are analyzed for various water depths and initial velocities. The results show that the initial velocity has a great influence on the formation, development, and collapse of the cavity. The length and the thickness of the shoulder cavity vary non-linearly with the depth.展开更多
Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront f...Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront frequent flow interruptions in pipe systems due to the closing of valves or stopping of pumping equipment. This phenomenon can initiate serious damages like destruction of the pipe system involving leakage of the working fluid to the environment. If the system operates in a fragile environment, as in cold regions, concern about the consequences of leakage increases due to the variation of physical properties of fluid as well as the pipe material as a function of the temperature. Water hammer effects can be controlled focusing efforts on reducing the pressure increment that takes place once the phenomenon is presented. Some methods try to reduce the time of closure or the rate of change before the closure using special valves, others install additional elements to absorb the pressure surge and dissipate energy, others install relief valves to release the pressure, and others try to split the problem is smaller sections by installing check valves with dashpot or non-return valves. Splitting the pipeline into shorter sections is often used to help preventing the pipeline length of water falling back after a pump stops. In this paper the numerical results of maximum and minimum pressure values at both ends of a closed section are compared to experimental data. The numerical results follow the experimental trends.展开更多
The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In thi...The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.展开更多
Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as followi...Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.展开更多
The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geome...The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geometrical specifications and the morphology of the river along the water catchment direction and the amount and type of the sediments. The sedimentary feed of rivers and basins are changed for the sake of natural factors or human disturbances. The river and basin react against this change in that their shape, morphology, plan and profile get changed due to the increase or decrease of the input sediment into the basin. It is essential to know the sediment amount produced by erodability and sedimentation of upstream basins and effects of projects and also to evaluate the amount of sedimentary load in base studies, civil projects, optimizing rivers and dam construction studies specially calculating the amount of sediment amount entering into the dams’ reservoirs in order to take engineering decisions and related alternatives. Sediment Weight Model and PSIAC Experimental Model are recognized as two common methods calculating the amount of the produced sediment caused by erosion applied in this research. Holistically, these methods have been used and compared. Although the results are almost close to one another, more sediment load has been produced in PSIAC method. As more affective parameters are used to cause erosion and produce sediment in PSIAC experimental model, it is recommended to refer to the results of this method because they are closer to reality.展开更多
基金supported by the Guiding Science and Technology Planning Project of Daqing(Grant No.zd-2021-36)Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(Grant No.LBH-Z21084)Natural Science Foundation of Heilongjiang Province(Grant No.LH 2022E019).
文摘The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos.40105003 and 4001161948partly supported by the Chinese Academny of Sciences Projct KZCX-201.
文摘Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.
基金supported by the National Natural Science Foundation of China (Grant No. 50979063)
文摘More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish, Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth), aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.
文摘A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.
文摘The Tianshui Experimental Site of Soil and Water Conservation was set up in 1942.Then the first construction publicized the thinking of soil and water conservation,and popularized the technologies of soil and water conservation and related plants.Their efforts established the foundation of the science of soil and water conservation with the first high-tech and high quality R&D team,and pushed the research of soil and water conservation building on the stage of systematization.All of this provided rare good scientific data and theoretical support for the soil and water conservation and the development of the regional economy in Northwest China.
文摘Experimental studies are carried out with slender bodies vertically exiting out of the water using a high-speed camera. The mechanisms for the formation, development, and collapse of the cavity around the slender body are explored. The dynamic characteristics of the shoulder cavity and the trail cavity during the water-exit of low-speed bodies are analyzed for various water depths and initial velocities. The results show that the initial velocity has a great influence on the formation, development, and collapse of the cavity. The length and the thickness of the shoulder cavity vary non-linearly with the depth.
文摘Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront frequent flow interruptions in pipe systems due to the closing of valves or stopping of pumping equipment. This phenomenon can initiate serious damages like destruction of the pipe system involving leakage of the working fluid to the environment. If the system operates in a fragile environment, as in cold regions, concern about the consequences of leakage increases due to the variation of physical properties of fluid as well as the pipe material as a function of the temperature. Water hammer effects can be controlled focusing efforts on reducing the pressure increment that takes place once the phenomenon is presented. Some methods try to reduce the time of closure or the rate of change before the closure using special valves, others install additional elements to absorb the pressure surge and dissipate energy, others install relief valves to release the pressure, and others try to split the problem is smaller sections by installing check valves with dashpot or non-return valves. Splitting the pipeline into shorter sections is often used to help preventing the pipeline length of water falling back after a pump stops. In this paper the numerical results of maximum and minimum pressure values at both ends of a closed section are compared to experimental data. The numerical results follow the experimental trends.
基金supported by the National Natural Science Foundation of China (Grant No. 50679024)the Innovation Program for College Graduate of Jiangsu Province of 2007 (Grant No. CX07B_130Z)
文摘The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.
基金The Doctoral Foundation of the Education Ministry of China(970 53 0 1) The Natural Science Foundationof Hunan province (97JJ2 0 5)
文摘Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.
文摘The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geometrical specifications and the morphology of the river along the water catchment direction and the amount and type of the sediments. The sedimentary feed of rivers and basins are changed for the sake of natural factors or human disturbances. The river and basin react against this change in that their shape, morphology, plan and profile get changed due to the increase or decrease of the input sediment into the basin. It is essential to know the sediment amount produced by erodability and sedimentation of upstream basins and effects of projects and also to evaluate the amount of sedimentary load in base studies, civil projects, optimizing rivers and dam construction studies specially calculating the amount of sediment amount entering into the dams’ reservoirs in order to take engineering decisions and related alternatives. Sediment Weight Model and PSIAC Experimental Model are recognized as two common methods calculating the amount of the produced sediment caused by erosion applied in this research. Holistically, these methods have been used and compared. Although the results are almost close to one another, more sediment load has been produced in PSIAC method. As more affective parameters are used to cause erosion and produce sediment in PSIAC experimental model, it is recommended to refer to the results of this method because they are closer to reality.