In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different...In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.展开更多
Water-dispersed polyurethane (PU) adhesive is a novel and highly efficient adhesive with broad application potential. In this study, the key parameters affecting the synthesis and application of this adhesive were exa...Water-dispersed polyurethane (PU) adhesive is a novel and highly efficient adhesive with broad application potential. In this study, the key parameters affecting the synthesis and application of this adhesive were examined, and optimal conditions were identified. The water-dispersed PU adhesive was successfully synthesized, and applied in the fastness test of pigment printing on cotton fabric. The data demonstrated that all the fastnesses of PU adhesive were better than that of the conventional PA one.展开更多
A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites...A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites are well dispersible in polar solvents such as water,tetrahydrofuran and ethanol.Chemical structure of the resulting product was characterized by Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).FTIR showed that the"grafting to"process belonged to covalent attachment mechanisms.TEM observations indicated that the MWCNTs were coated with a uniform PNENV layer,and the MWCNTs existed as a hard backbone.TGA data also showed that the PNENV shell was successfully grafted to the side wall of MWCNTs.展开更多
Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their ...Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their poor stability against water has been one of the biggest challenges for most applications.Herein,we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr_(3) nanocrystals(NCs).The as-prepared NCs sustain their superior photoluminescence(91%quantum yield in water)for more than 200 days in an aqueous environment,which is attributed to a passivation effect induced by excess CsBr salts.Thanks to the ultra-stability of these LHP NCs,for the first time,we report a new application of LHP NCs,in which they are applied to electrocatalysis of CO_(2) reduction reaction.Noticeably,they show significant electrocatalytic activity(faradaic yield:32%for CH4,40%for CO)and operation stability(>350 h).展开更多
The combination of organic carbon(OC) and reactive minerals is a crucial mechanism of soil carbon(C) storage, which is regulated by the formation of organo-mineral complexes on the surface of soil colloids. The effect...The combination of organic carbon(OC) and reactive minerals is a crucial mechanism of soil carbon(C) storage, which is regulated by the formation of organo-mineral complexes on the surface of soil colloids. The effect of organic fertilizer on the storage mechanism of OC in soil colloids was studied through an 8-year field experiment, which included four treatments: i) no fertilization(control, CK), ii) only mineral N, P, and K fertilization(NPK), iii) NPK plus a low level(450 kg C ha^(-1)year^(-1)) of organic fertilization(NPKC1), and iv) NPK plus a high level(900 kg C ha^(-1)year^(-1)) of organic fertilization(NPKC2). The main results indicated that organic fertilizer addition significantly increased the content of aromatic-C, which was 158.7% and 140.0% higher in soil colloids than in bulk soil in the NPKC1 and NPKC2 treatments, respectively. X-ray photoelectron spectroscopy further demonstrated that the relative proportion of C=C group on the surface of soil colloids was increased by 20.1% and 19.1% in the NPKC1 and NPKC2 treatments, respectively,compared with the CK. In addition, compared with the NPK treatment, the content of reactive minerals(such as Fe and Al oxides) significantly increased with organic fertilization, which was positively correlated with C=C group in soil colloids. This indicates that aromatic-C may be retained by the formation of aromatic-mineral complexes with reactive minerals in soil colloids. Organic fertilization also significantly increased OC storage efficiency(OCSE), which was significantly higher in the NPKC1 treatment than in the NPKC2 treatment. Therefore, a moderate amount of organic fertilizer application is a better agronomic practice to increase OCSE and OC storage in saline-alkaline paddy soils.展开更多
Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a...Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a paddy soil profile were investigated in this study. Dissolved P and colloidal P in water-dispersible soil colloid suspension increased obviously with increasing DPS. The change point of DPS was at 0.12 by using a split-line model. Above the value, dissolved P (3.1 mg P kg-1 ) in soil profile would increase sharply and then transfer downward. Compared with dissolved P, colloidal P was the dominant fraction (78%-91%) of P in soil colloid suspension, and positively related to DPS without a significant change point. The high release of colloids in subsoils with low DPS was attributed to the low ionic strength and high pH value in subsoils. The DPS also had a significant and positive correlation with electrical conductivity (EC), but it showed a negative correlation with pH value. However, the concentration of colloidal P was not greatly correlated to the pH value, EC and optical density of the soil colloid suspension. The results indicated that DPS was an important factor that may affect the accumulation and mobilization of water-extractable colloidal P and dissolved P.展开更多
A facile approach was developed to prepare highly dispersed TiO2 nanoparticles with selected phase. The crystallization phase of the nanoparticles can be easily tuned from anatase to rutile by the dosage of hydrochlor...A facile approach was developed to prepare highly dispersed TiO2 nanoparticles with selected phase. The crystallization phase of the nanoparticles can be easily tuned from anatase to rutile by the dosage of hydrochloric acid in the reaction system. The crystallite size of the as-prepared anatase TiO2 nanoparticles was ca. 3.2 nm with high dispersion. A transparent TiO2 colloid was obtained by dispersing the as-prepared anatase TiO2 nanoparticles in deionized water without any organic additives added. The concentration of TiO2-H2O colloid can be as high as 1600 g/L. The optical transmittance of TiO2-H2O colloid with a low concentration was nearly 100% in the visible region. Furthermore, anatase TiO2 nanoparticles(TiO2-NPs) showed superior photocatalytic performance compared to rutile TiO2-NPs.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2020R1A4A4079954 and 2021R1A2B5B01001448)。
文摘In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.
文摘Water-dispersed polyurethane (PU) adhesive is a novel and highly efficient adhesive with broad application potential. In this study, the key parameters affecting the synthesis and application of this adhesive were examined, and optimal conditions were identified. The water-dispersed PU adhesive was successfully synthesized, and applied in the fastness test of pigment printing on cotton fabric. The data demonstrated that all the fastnesses of PU adhesive were better than that of the conventional PA one.
基金supported by the Natural Science Education Foundation of Gansu province(No.07-08-12)the"QingLan"Talent Engineering Funds of Tianshui Normal University.
文摘A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites are well dispersible in polar solvents such as water,tetrahydrofuran and ethanol.Chemical structure of the resulting product was characterized by Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).FTIR showed that the"grafting to"process belonged to covalent attachment mechanisms.TEM observations indicated that the MWCNTs were coated with a uniform PNENV layer,and the MWCNTs existed as a hard backbone.TGA data also showed that the PNENV shell was successfully grafted to the side wall of MWCNTs.
基金This research was supported by the National Natural Science Foundation of China(Nos.11674258,51602305,51702219,61975134,11904250)Guangdong Basic and Applied Basic Research Foundation(2020B1515020051)+2 种基金the Science and Technology Innovation Commission of Shenzhen(JCYJ20180305125345378)Shenzhen Nanshan District Pilotage Team Program(LHTD20170006)Partial support from The Institute For Lasers,Photonics and Biophotonics at The University at Buffalo is also acknowledged.T.Z.and I.Z.were supported by the U.S.DOE,Office of Science BES,Award No.DE-SC0004890.
文摘Thanks to the excellent optoelectronic properties,lead halide perovskites(LHPs)have been widely employed in highperformance optoelectronic devices such as solar cells and lightemitting diodes.However,overcoming their poor stability against water has been one of the biggest challenges for most applications.Herein,we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr_(3) nanocrystals(NCs).The as-prepared NCs sustain their superior photoluminescence(91%quantum yield in water)for more than 200 days in an aqueous environment,which is attributed to a passivation effect induced by excess CsBr salts.Thanks to the ultra-stability of these LHP NCs,for the first time,we report a new application of LHP NCs,in which they are applied to electrocatalysis of CO_(2) reduction reaction.Noticeably,they show significant electrocatalytic activity(faradaic yield:32%for CH4,40%for CO)and operation stability(>350 h).
基金funded by the National Key R&D Projects of China(No.2021YFD1900901-06)the Agricultural Science and Technology Innovation Projects,China(ASTIP No.CAAS-ZDRW202201)+1 种基金the Modern Agricultural Industrial Technology System of China(No.SDAIT-17-05)the Provincial Natural Science Foundation of Shandong,China(No.ZR2020MC154)。
文摘The combination of organic carbon(OC) and reactive minerals is a crucial mechanism of soil carbon(C) storage, which is regulated by the formation of organo-mineral complexes on the surface of soil colloids. The effect of organic fertilizer on the storage mechanism of OC in soil colloids was studied through an 8-year field experiment, which included four treatments: i) no fertilization(control, CK), ii) only mineral N, P, and K fertilization(NPK), iii) NPK plus a low level(450 kg C ha^(-1)year^(-1)) of organic fertilization(NPKC1), and iv) NPK plus a high level(900 kg C ha^(-1)year^(-1)) of organic fertilization(NPKC2). The main results indicated that organic fertilizer addition significantly increased the content of aromatic-C, which was 158.7% and 140.0% higher in soil colloids than in bulk soil in the NPKC1 and NPKC2 treatments, respectively. X-ray photoelectron spectroscopy further demonstrated that the relative proportion of C=C group on the surface of soil colloids was increased by 20.1% and 19.1% in the NPKC1 and NPKC2 treatments, respectively,compared with the CK. In addition, compared with the NPK treatment, the content of reactive minerals(such as Fe and Al oxides) significantly increased with organic fertilization, which was positively correlated with C=C group in soil colloids. This indicates that aromatic-C may be retained by the formation of aromatic-mineral complexes with reactive minerals in soil colloids. Organic fertilization also significantly increased OC storage efficiency(OCSE), which was significantly higher in the NPKC1 treatment than in the NPKC2 treatment. Therefore, a moderate amount of organic fertilizer application is a better agronomic practice to increase OCSE and OC storage in saline-alkaline paddy soils.
基金Supported by the National Natural Science Foundation of China (Nos. 21077088 and 41271314)the National Basic Research Program (973 Program) of China (No. 2002CB410807)
文摘Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a paddy soil profile were investigated in this study. Dissolved P and colloidal P in water-dispersible soil colloid suspension increased obviously with increasing DPS. The change point of DPS was at 0.12 by using a split-line model. Above the value, dissolved P (3.1 mg P kg-1 ) in soil profile would increase sharply and then transfer downward. Compared with dissolved P, colloidal P was the dominant fraction (78%-91%) of P in soil colloid suspension, and positively related to DPS without a significant change point. The high release of colloids in subsoils with low DPS was attributed to the low ionic strength and high pH value in subsoils. The DPS also had a significant and positive correlation with electrical conductivity (EC), but it showed a negative correlation with pH value. However, the concentration of colloidal P was not greatly correlated to the pH value, EC and optical density of the soil colloid suspension. The results indicated that DPS was an important factor that may affect the accumulation and mobilization of water-extractable colloidal P and dissolved P.
基金Supported by the National Natural Science Foundation of China(Nos.21071058, 21371066, 21301067).
文摘A facile approach was developed to prepare highly dispersed TiO2 nanoparticles with selected phase. The crystallization phase of the nanoparticles can be easily tuned from anatase to rutile by the dosage of hydrochloric acid in the reaction system. The crystallite size of the as-prepared anatase TiO2 nanoparticles was ca. 3.2 nm with high dispersion. A transparent TiO2 colloid was obtained by dispersing the as-prepared anatase TiO2 nanoparticles in deionized water without any organic additives added. The concentration of TiO2-H2O colloid can be as high as 1600 g/L. The optical transmittance of TiO2-H2O colloid with a low concentration was nearly 100% in the visible region. Furthermore, anatase TiO2 nanoparticles(TiO2-NPs) showed superior photocatalytic performance compared to rutile TiO2-NPs.