期刊文献+
共找到1,402篇文章
< 1 2 71 >
每页显示 20 50 100
Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam
1
作者 Gang Wang Shuxin Wang +5 位作者 Yixin Liu Qiming Huang Shengpeng Li Shuliang Xie Jinye Zheng Jiuyuan Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期159-175,共17页
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ... The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters. 展开更多
关键词 Clean fracturing fluid hydraulic fracturing VISCOSITY Horizontal in-situ stress difference hydraulic fracture morphology Acoustic emission
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
2
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid hydraulic fracturing Reservoir damage
下载PDF
Comparative assessment of mechanical and chemical fluid diversion techniques during hydraulic fracturing in horizontal wells
3
作者 Maunish S.Shah Subhash N.Shah 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3582-3597,共16页
The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to impr... The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to improve hydraulic fracturing treatment by increasing stimulated reservoir volume and improving hydrocarbon recovery.This is possible by achieving any of the following objectives:creating uniform distribution of treatment slurry within the target zone;treating unstimulated and under-stimulated zones;or by increasing fracture density by creating a complex fracture network.The fluid diversion application is also helpful in decreasing the number of stages(by increasing stage length)for multi-stage plug-n-perf(PnP)fracturing treatment.It is also applied to prevent fracture-driven interactions between adjacent wells,which is currently a major issue,especially in shale.In addition,for successful refracturing treatment,the diverter application is essential for isolating the existing fractures and redirecting the treatment slurry to the desired unstimulated zones.The diversion methods can be broadly categorized into the mechanical and chemical diversion.Several established mechanical diversion techniques are frac plugs,expandable casing patches,expandable liners,swellable packers,straddle packer assembly,sand plugs,frac sleeves,perforation ball sealers,and limited entry technique.The different chemical diversion techniques are particulates,fibers,gels,surfactants,perforation pods,and composite diverting.This paper describes the current status of established mechanical and chemical diverter technologies and examines their comparative advantages and challenges.Various techniques are suitable for diverter application,but the technique is selected based on the desired objective and conditions of the wellbore and reservoir.The general guidelines for selecting diversion techniques and operational considerations are also provided in the paper.The diagnosis of diversion treatment plays an essential role in diversion technique selection and optimization of selection parameters for the subsequent treatments.Therefore,the application of conventional surface pressure monitoring techniques and advanced diagnostic tools to evaluate diversion effectiveness are briefly described.Presently no standard laboratory testing method is established for the performance evaluation of diverting agents.Therefore,researchers have implemented various laboratory methods,which are briefly summarized in the paper.Significant insight into the diversion technology and guidelines for its selection and successful implementation is provided to help engineers to increase the effectiveness of hydraulic fracturing treatments.The limitations of individual diversion techniques are clarified,which provide the future scope of research for improvement in various diversion technologies. 展开更多
关键词 fluid diversion Diverter Diverting agents Multi-stage fracturing hydraulic fracturing Horizontal well
下载PDF
Temporal variations in geochemistry of hydraulic fracturing fluid and flowback water in a tight oil reservoir
4
作者 Jie Tian Liang Wang +3 位作者 Li-Pin Ni Li-Wei Mou Shu-Te Su Mehdi Ostadhassan 《Petroleum Science》 SCIE EI CSCD 2023年第5期3013-3021,共9页
Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of t... Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of the Lucaogou Formation in the Junggar Basin are temporally sampled from day 1 to day 64.Freshwater is used for fracturing,and HFF is obtained.The chemical and isotopic parameters(including the water type,total salinity,total dissolved solids(TDS),pH,concentrations of Na^(+),Cl^(-),Ba^(+),K^(+),Fe^(2+)+Fe^(3+),and CO_(3)^(2-),dD,and δ^(18)O)are experimentally obtained,and their variations with time are systematically analyzed based on the flowback water.The results show that the water type,Na/Cl ratio,total salinity,and TDS of the FPW change periodically primarily due to the HFF mixing with formation water,thus causing δD and δ^(18)O to deviate from the meteoric water line of Xinjiang.Because of watererock interaction(WRI),the concentrations of Fe^(2+)+Fe^(3+)and CO_(3)^(2-)of the FPW increase over time,with the solution pH becoming more alkaline.Furthermore,based on the significant changes observed in the geochemistry of the FPW,three separate time intervals of flowback time are identified:Stage Ⅰ(<10 days),where the FPW is dominated by the HFF and the changes in ions and isotopes are mainly caused by the WRI;Stage Ⅱ(10-37 days),where the FPW is dominated by the addition of formation water to the HFF and the WRI is weakened;and finally,Stage Ⅲ(>37 days),where the FPW is dominated by the chemistry of the formation water.The methodology implemented in this study can provide critical support for the source identification of formation water. 展开更多
关键词 Tight oil reservoirs ISOTOPE Flowback and produced water(FPW) Inorganic ions hydraulic fracturing fluid(HFF)
下载PDF
Performance Testing of Tractor Hydraulic Fluids to Simulate In-Use Conditions 被引量:1
5
作者 Brian J.Bentley 《润滑油》 CAS 2010年第6期28-32,48,共6页
Tractor hydraulic fluids are tested to maximize their performance levels and to ensure manufacturer′s standards are met.Common tractor hydraulic fluid tests include: Gear Wear Protection,Brake Chatter Reduction,Wet-C... Tractor hydraulic fluids are tested to maximize their performance levels and to ensure manufacturer′s standards are met.Common tractor hydraulic fluid tests include: Gear Wear Protection,Brake Chatter Reduction,Wet-Clutch Capacity,and Pump Performance tests.These tests are run by Southwest Research Institute,in the U.S.A.,for tractors built by John Deere and Case-New Holland.This paper details current methods for evaluating tractor hydraulic fluids.The tests that are described utilize full size equipment and were developed by the tractor′s original equipment manufacturers(OEMs). 展开更多
关键词 USE CONDITIONS hydraulic fluids Testing hydraulic fluids PERFORMANCE Pump PERFORMANCE methods for Research levels paper OEMs Case Wet New
下载PDF
Comparison of Lubricities of Two Novel Benzotriazole Derivatives Used as Additives in Water-Glycol Hydraulic Fluid 被引量:1
6
作者 Zheng Zhe Wang Jianhua +2 位作者 Fang Jianhua Jiang Zeqi Gu Kecheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期114-124,共11页
Two kinds of benzotriazole derivatives with and without sulfur (abbreviated as BSC and BC, respectively,) were synthesized and their lubricating, anticorrosion and antirust properties were investigated, when they we... Two kinds of benzotriazole derivatives with and without sulfur (abbreviated as BSC and BC, respectively,) were synthesized and their lubricating, anticorrosion and antirust properties were investigated, when they were used as additives in the water-glycol fluid. The morphology and chemical species of typical elements on the worn surface were examined by the scanning electron microscopy (SEM), the energy dispersive spectrometry (EDS), and the X-ray photoelectron spectroscopy (XPS) in order to reveal the tribological mechanisms. The results indicated that two synthesized additives could effectively improve the anti-wear, friction-reducing, load-carrying, anticorrosion, and antirnst properties of the base fluid. The surface analysis illustrated that stable nitrogen-containing absorption films generated by BC should be responsible for its facilitated anti-wear and friction-reducing performance, and the excellent lubricities of BSC should be attxibuted to the combined action of adsorption film and tribo-chemical film which were composed of iron oxides, iron sulfides and iron sulfates. The superior lubricating properties of BSC as compared to that of BC demonstrated the effectiveness of elemental sulfur in reducing friction and wear, especially under high loads. But corrosion wear is more obvious at a relative high concentration of elemental sulfur. 展开更多
关键词 hydraulic fluid water-soluble additives BENZOTRIAZOLE lubricating properties
下载PDF
Perspectives on the Potential Migration of Fluids Associated with Hydraulic Fracturing in Southwest Florida
7
作者 William C. Hutchings Richard G. Lewis 《Journal of Environmental Science and Engineering(A)》 2018年第3期108-124,共17页
The variable-density flow model-SEAWAT Version 4, was used to evaluate the hydrogeological conditions associatedwith hydraulic fracturing (fracking) the limestone oil reservoir in the Lower Cretaceous Sunniland Form... The variable-density flow model-SEAWAT Version 4, was used to evaluate the hydrogeological conditions associatedwith hydraulic fracturing (fracking) the limestone oil reservoir in the Lower Cretaceous Sunniland Formation of Southwest Florida.This research contributes to the understanding of the controls on fluid and potential contaminant migration, following high pressurehydraulic fracturing. A hydraulic fracturing treatment used recently in this formation at the Collier-Hogan 20-3H well represents thebase case simulation. Multiple stage fracturing using typical stress periods, a modelled fracture zone radius, and various injectionrates were tested to evaluate the potential for horizontal and vertical fluid migration in and from the reservoir under dynamicconditions, with TDS used as a tracer. Hypothetical scenarios including preferential vertical pathways between the SunnilandFormation and the Lower Floridan aquifer Boulder Zone were also simulated. Results indicate that injected fluids do not migratesignificantly in the lateral and vertical directions beyond the design fractured zone, unless a preferential pathway exists within closeproximity to the fractured zone. In a worst-case scenario under the simulated conditions, vertical heads are approximately 580 metersgreater than static conditions and fluids associated with hydraulic fracturing vertically migrate approximately 500 meters; therefore,the quality of the deepest sources of drinking water is not compromised. Analytical results from a monitoring well installed in theimmediate vicinity of the Collier-Hogan 20-3H well and at the base of the deepest source of drinking water support the conclusionthat impacts from hydraulic fracturing fluids have not migrated into the deepest sources of drinking water. 展开更多
关键词 hydraulic fracturing Sunniland Formation fluid migration
下载PDF
Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin
8
作者 Zhao-xian Zheng Xiao-shun Cui +1 位作者 Pu-cheng Zhu Si-jia Guo 《Journal of Groundwater Science and Engineering》 2021年第2期93-101,共9页
Hydrogeochemical processes that would occur in polluted groundwater and aquifer system,may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF)in groundwater.In this p... Hydrogeochemical processes that would occur in polluted groundwater and aquifer system,may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF)in groundwater.In this paper,the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area,where the hydrogeochemical processes affecting Sr isotope was analysed.Then,the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator.The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr(the deviation of the 87Sr/86Sr ratio)of polluted groundwater.In the meantime,cation exchange can considerably affect Sr composition in the polluted groundwater.The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater,respectively.However,the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater.Addition of Sr from cation exchange would only cause a 0.2%and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater,respectively.These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area.For the scenario of groundwater pollution by HFFF,when the HFFF accounts for 5%(in volume percentage)of the polluted groundwater,the HFFF can result in detectable shifts of εSr(Δ_(εSr)=0.86)in natural groundwater.Therefore,after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF,Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin. 展开更多
关键词 Dameigou shale gas Groundwater pollution hydraulic fracturing flowback fluids Strontium isotope Hydrogeochemical modelling
下载PDF
Maintaining Optimum Pump Performance with Specially-Formulated Hydraulic Fluids
9
作者 Ping Y. Zhu 《润滑油》 CAS 2005年第4期61-64,共4页
This paper describes a battery of tests, and related results, that were performed under normal and severe conditions designed to demonstrate that hydraulic fluids formulated with Lubrizol’s high quality anti-wear hyd... This paper describes a battery of tests, and related results, that were performed under normal and severe conditions designed to demonstrate that hydraulic fluids formulated with Lubrizol’s high quality anti-wear hydraulic fluid technology can stand up to today’s increasing demands for longer life and provide excellent performance under higher operating temperatures and pressures. 展开更多
关键词 液压机液体 液体传动油 产品性能
下载PDF
Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids
10
作者 Christian D.Neveu Michael D.Zink Alex Tsay 《润滑油》 CAS 2006年第5期23-33,共11页
By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be q... By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy.This paper reviews the research that demonstrates these efficiency advantages in gear,vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in operation.Finally a `Maximum Efficiency Hydraulic Fluid’ performance definition is presented which will enable an equipment operator to easily improve the performance of the system and reduce fuel consumption. 展开更多
关键词 最高效率液压机液体 粘度指数 泵效率 容积效率
下载PDF
Passive Magnetorheological Fluid Filled Hydraulic Engine Mount
11
作者 阎为革 刘淑艳 +1 位作者 李俊杰 徐永强 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期434-438,共5页
Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the expe... Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the experimental data show that the dynamic characteristics of MR mount such as dynamic stiffness and loss angles vary distinctly as the excitation frequency, and MR fluids as one type of attracting controllable fluids are fit for hydraulic engine mounts. The author advises to work out potentialities of MR fluids, the semi control or active control MR fluids filled hydraulic engine mount must be developed. 展开更多
关键词 ENGINE hydraulic mount magnetorheological fluids dynamic characteristic
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:2
12
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands 被引量:17
13
作者 FAN Liwei Hai Reti +2 位作者 WANG Wenxing LU Zexiang YANG Zhiming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1415-1422,共8页
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was... A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr... 展开更多
关键词 subsurface flow wetland computational fluid dynamic resident time distribution hydraulic performance
下载PDF
Simulation investigation on fluid characteristics of jet pipe water hydraulic servo valve based on CFD 被引量:5
14
作者 李如平 聂松林 +1 位作者 易孟林 阮俊 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期201-206,共6页
Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, t... Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components. 展开更多
关键词 computional fluid dynamics (CFD) fluid characteristics jet pipe servo valve water hydraulics
下载PDF
Fluid structure interaction for circulation valve of hydraulic shock absorber 被引量:6
15
作者 陈齐平 舒红宇 +2 位作者 方文强 何联格 杨茂举 《Journal of Central South University》 SCIE EI CAS 2013年第3期648-654,共7页
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me... Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future. 展开更多
关键词 hydraulic shock absorber circulation valve finite element method fluid structure interaction simulation analysis
下载PDF
Theoretical Model of Dynamic Bulk Modulus for Aerated Hydraulic Fluid 被引量:3
16
作者 Xiaoming Yuan Weiqi Wang +1 位作者 Xuan Zhu Lijie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期183-193,共11页
Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter m... Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus. 展开更多
关键词 Aerated hydraulic fluid Dynamic bulk modulus Theory model Air fraction PRESSURE
下载PDF
Experimental research on a new encapsulated heat-generating hydraulic fracturing fluid system 被引量:2
17
作者 吴金桥 张宁生 +1 位作者 吴新民 刘晓娟 《Chinese Journal Of Geochemistry》 EI CAS 2006年第2期162-166,共5页
During fracturing treatment for low-temperature, shallow and high freezing point oil reservoirs, the first-line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages... During fracturing treatment for low-temperature, shallow and high freezing point oil reservoirs, the first-line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid. To avoid those problems, it is suggested to adopt a new encapsulated heat-generating hydraulic fracturing fluid system as described in this paper.; Firstly, two kinds of chemical heat-generating systems were studied and the NH-4Cl-NaNO-2 system was selected. According to the reaction characteristics of the system, oxalic acid was chosen as a catalyst of reaction and encapsulated using ethyl cellulose and paraffin as coating materials by the phase separation method. Compatibility of NH-4Cl-NaNO-2-encapsulated oxalic acid with hydroxypropyl-guar fracturing fluid was also discussed in the paper. The results showed that the hydraulic fracturing fluid containing encapsulated heat-generating agents hare a good stability and compatibility. When the fracturing fluid contains {2.0} mol·L+{-1} NH-4Cl-NaNO-2, {0.93%} encapsulated oxalic acid and {0.08%} ammonium persulfate, the peak temperature can reach {78.0℃} and the viscosity of residual liquid is {3.12} mPa·s after 4 hours. 展开更多
关键词 水力压裂 流动性 压缩方式 兼容性 凝胶体 天然气 石油
下载PDF
Dynamic fluid transport property of hydraulic fractures and its evaluation using acoustic logging
18
作者 LI Huanran TANG Xiaoming +1 位作者 LI Shengqing SU Yuanda 《Petroleum Exploration and Development》 CSCD 2022年第1期223-232,共10页
The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual ... The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual productivity. This paper studies the dynamic fluid flow through hydraulic fractures and its effect on borehole acoustic waves. Firstly, based on the fractal characteristics of fractures observed in hydraulic fracturing experiments, a permeability model of complex fracture network is established. Combining the dynamic fluid flow response of the model with the Biot-Rosenbaum theory that describes the acoustic wave propagation in permeable formations, the influence of hydraulic fractures on the velocity dispersion of borehole Stoneley-wave is then calculated and analyzed, whereby a novel hydraulic fracture fluid transport property evaluation method is proposed. The results show that the Stoneley-wave velocity dispersion characteristics caused by complex fractures can be equivalent to those of the plane fracture model, provided that the average permeability of the complex fracture model is equal to the permeability of the plane fracture. In addition, for fractures under high-permeability(fracture width 10~100 μm, permeability ~100 μm^(2)) and reduced permeability(1~10 μm, ~10 μm^(2), as in fracture closure) conditions, the Stoneley-wave velocity dispersion characteristics are significantly different. The field application shows that this fluid transport property evaluation method is practical to assess the permeability and the connectivity of hydraulic fractures. 展开更多
关键词 hydraulic fracture dynamic fluid transport property acoustic logging Stoneley-wave velocity dispersion fracture characterization
下载PDF
FLUID INDUCED HYDRAULIC SYSTEM VIBRATIONOF POWERED SUPPORT
19
作者 冯继玲 谭彬 +2 位作者 刘选民 王世文 寇子明 《Journal of Coal Science & Engineering(China)》 1998年第1期36-39,共4页
Fluid and solid interaction analysis of hydraulic support under the coming pressure of roof rocks was presented. The mathematical model of the system was proposed and numerical studies by the character line method wer... Fluid and solid interaction analysis of hydraulic support under the coming pressure of roof rocks was presented. The mathematical model of the system was proposed and numerical studies by the character line method were carried out. 展开更多
关键词 fluid solid interaction powered support hydraulic system
下载PDF
FluidSIM在液压与气动控制仿真实验中的应用 被引量:10
20
作者 郭联金 潘斌 《实验技术与管理》 CAS 北大核心 2015年第8期121-126,共6页
采用基于FluidSIM软件的系统仿真技术,简化了液压与气动控制系统的设计和分析。介绍了最新版FluidSIM软件的功能特点,并分别通过电液比例控制系统的建模及仿真、气动步进顺控系统的建模及仿真两个实例,说明FluidSIM在现代液压与气动控... 采用基于FluidSIM软件的系统仿真技术,简化了液压与气动控制系统的设计和分析。介绍了最新版FluidSIM软件的功能特点,并分别通过电液比例控制系统的建模及仿真、气动步进顺控系统的建模及仿真两个实例,说明FluidSIM在现代液压与气动控制新技术中的应用方法和实现过程。仿真过程及结果表明,FluidSIM的运用有助于液压与气动控制系统的分析、设计和工程应用研究。 展开更多
关键词 电液比例位置控制 气动控制系统 仿真实验 fluidsIM
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部