Objective:To investigate the effect of continuous double-lumen irrigation drainage at constant temperature on the control of abdominal infection after surgery,providing a reference for clinical treatment.Methods:From ...Objective:To investigate the effect of continuous double-lumen irrigation drainage at constant temperature on the control of abdominal infection after surgery,providing a reference for clinical treatment.Methods:From December 2022 to August 2023,100 patients with abdominal infections after surgery were selected from Wendeng People's Hospital in Weihai.They were randomly divided into a control group(50 cases,using conventional single-hole rubber irrigation drainage)and an observation group(50 cases,using continuous double-lumen irrigation drainage at constant temperature).The inflammatory and immune indicators of the two groups were compared after different interventions,and the specific conditions of abdominal infection were statistically analyzed.Results:There was no significant difference in inflammatory indicators between the two groups before intervention(P>0.05).After the intervention,the inflammatory indicators of the observation group were significantly lower(P<0.05).There was no significant difference in immune function indicators between the two groups before intervention(P>0.05).After intervention,the immune function indicators of the observation group showed significant improvement(P<0.05).The control of abdominal infection in the observation group was better than in the control group(P<0.05).Conclusion:Continuous double-lumen rrigation drainage at constant temperature has a better effect on controlling abdominal infection after surgery,improving the infection condition,and enhancing the immune function of patients.展开更多
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr...Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation.展开更多
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa...Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.展开更多
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ...In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year b...The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year by year. The higher the electricity consumption was, the lower the factor adjusted power price was. The an- nual factor adjusted power price decreased from 532.5 yuan (above the national standard) to -599.78 yuan (below the national standard). The electricity consumption was always highest in June. The more the rainfall from June to September was, the less the monthly electricity usage was. The collect electricity charge to total electricity charge ratio was 1.26%-1.34%, the directory electricity charge to total electricity charge ratio was 96.34%-99.80%, and the electricity loss of transformer was 288-496 kW/h.展开更多
Summary: Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputa- tion. The aim ...Summary: Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputa- tion. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical effi- cacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Am- putations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dress- ing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one pa- tient who suffered from severe septic shock. Emergent resuscitation was performed and the patient re- turned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenviroument and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa...Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.展开更多
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe...On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.展开更多
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi...The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.展开更多
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat...This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.展开更多
The cyclic irrigation system has been practiced in Japan for reducing pollutant outflow loadings from paddy fields. The cyclic irrigation is an irrigation method to reuse water by pumping drainage water and re-distrib...The cyclic irrigation system has been practiced in Japan for reducing pollutant outflow loadings from paddy fields. The cyclic irrigation is an irrigation method to reuse water by pumping drainage water and re-distributing it to the farmland. Quantification and assessment of the effects of the cyclic irrigation are needed to identify management options for maximizing the benefits of cyclic irrigation. The study was aimed at assessing loading characteristics from paddy field area under the cyclic irrigation and developing a model for simulating water and material flow in paddy field area that can be used as a management tool. The study was carried out in a paddy field in the Asagoi District, Oumihatiman city in Shiga Prefecture, Japan. Using the results of water quality analysis, the average net loadings of T-N and T-P were estimated for both cyclic and non-cyclic irrigation sites. The result indicates a higher nutrient absorption rate in the cyclic irrigation site than that in the non-cyclic irrigation site. The developed cyclic irrigation model showed good agreements between observed and simulated drainage volumes and nitrogen loadings. The scenario analysis by application of the model showed a potential of reducing the loading amount by increasing the cyclic irrigation ratio and reducing the amount of fertilizer application without affecting the rice yield.展开更多
Drainage by chest tube thoracostomy is widely used in treatment of early empyema thoracis in children, but drainage with antiseptic lavage-irrigation is more frequent in our context since the last 20 years. This study...Drainage by chest tube thoracostomy is widely used in treatment of early empyema thoracis in children, but drainage with antiseptic lavage-irrigation is more frequent in our context since the last 20 years. This study was to determine which was more effective in our experience comparing chest tube drainage with catheter antiseptic lavage-irrigation versus drainage by chest tube thoracostomy alone in the management of empyema thoracis in children. Patients and Methods: Demographic, clinical and microbiological data on children with thoracic empyema undergoing drainage by chest tube thoracostomy alone or with antiseptic lavage-irrigation were obtained from 2 thoracic surgical centers from September 2008 to December 2014. It was a retrospective study included 246 children (137 boys and 109 girls) who were managed for empyema thoracis at the author’s different department of surgery. Outcomes analysis with respect to treatment efficacy, hospital duration, chest tube duration, hospital costs, and need for subsequent procedures was analyzed and compared in the 2 groups. Results: Drainage of pus and antiseptic irrigation resulted in resolution of pyrexia with improvement in general condition in 85.82% of patients in group 1 and by tube thoracostomy alone in 73.95% in group 2. There are a significant difference in the length of hospital stay (p = 0.022), duration of chest tubes in situ (p = 0.040), treatment coast (p = 0.015) and outcome of stage 2 empyema disease (p = 0.037) between the 2 groups. Conclusion: it seems that chest tube drainage with antiseptic lavage-irrigation method is associated with a higher efficacy, shorter length of hospital stay, shorter duration of chest tube in situ, less cost and better outcome of stage 2 empyema diseases than a treatment strategy that utilizes chest tube thoracostomy alone.展开更多
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi...<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div>展开更多
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir...Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters.展开更多
Moderately severe and severe acute pancreatitis is characterized by local and systemic complications.Systemic complications predominate the early phase of acute pancreatitis while local complications are important in ...Moderately severe and severe acute pancreatitis is characterized by local and systemic complications.Systemic complications predominate the early phase of acute pancreatitis while local complications are important in the late phase of the disease.Necrotic fluid collections represent the most important local complication.Drainage of these collections is indicated in the setting of infection,persistent or new onset organ failure,compressive or pressure symptoms,and intraabdominal hypertension.Percutaneous,endoscopic,and minimally invasive surgical drainage represents the various methods of drainage with each having its own advantages and disadvantages.These methods are often complementary.In this minireview,we discuss the indications,timing,and techniques of drainage of pancreatic fluid collections with focus on percutaneous catheter drainage.We also discuss the novel methods and techniques to improve the outcomes of percutaneous catheter drainage.展开更多
Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ...Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system.展开更多
Given article describes the current status of irrigated agriculture in the Ferghana province, Republic of Uzbekistan. Climatic, hydrogeological, and soil conditions and hydromodule zoning of the Water User Association...Given article describes the current status of irrigated agriculture in the Ferghana province, Republic of Uzbekistan. Climatic, hydrogeological, and soil conditions and hydromodule zoning of the Water User Association (WUA) Oktepa Zilol were studied, and, on this basis, the farms growing cotton were selected. Variable and fixed costs and profitability of cotton-growing farms were analyzed. Based on the books of those farms, the crop budget was drawn up. Relationships between the profitability of cotton-growing farm and the irrigation sources used and soil fertility in the farm are explained. Finally, proposals for improvement of cotton production using various sources of irrigation under different degrees of groundwater salinity are provided.展开更多
文摘Objective:To investigate the effect of continuous double-lumen irrigation drainage at constant temperature on the control of abdominal infection after surgery,providing a reference for clinical treatment.Methods:From December 2022 to August 2023,100 patients with abdominal infections after surgery were selected from Wendeng People's Hospital in Weihai.They were randomly divided into a control group(50 cases,using conventional single-hole rubber irrigation drainage)and an observation group(50 cases,using continuous double-lumen irrigation drainage at constant temperature).The inflammatory and immune indicators of the two groups were compared after different interventions,and the specific conditions of abdominal infection were statistically analyzed.Results:There was no significant difference in inflammatory indicators between the two groups before intervention(P>0.05).After the intervention,the inflammatory indicators of the observation group were significantly lower(P<0.05).There was no significant difference in immune function indicators between the two groups before intervention(P>0.05).After intervention,the immune function indicators of the observation group showed significant improvement(P<0.05).The control of abdominal infection in the observation group was better than in the control group(P<0.05).Conclusion:Continuous double-lumen rrigation drainage at constant temperature has a better effect on controlling abdominal infection after surgery,improving the infection condition,and enhancing the immune function of patients.
基金Supported by National Science and Technology Support Program(2007BAD38B09)~~
文摘Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation.
文摘Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.
基金Supported by Key Technology R&D Program Project of Shijiazhuang City(141520208A)~~
文摘In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
文摘The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year by year. The higher the electricity consumption was, the lower the factor adjusted power price was. The an- nual factor adjusted power price decreased from 532.5 yuan (above the national standard) to -599.78 yuan (below the national standard). The electricity consumption was always highest in June. The more the rainfall from June to September was, the less the monthly electricity usage was. The collect electricity charge to total electricity charge ratio was 1.26%-1.34%, the directory electricity charge to total electricity charge ratio was 96.34%-99.80%, and the electricity loss of transformer was 288-496 kW/h.
基金supported by a grant from the National Natural Science Foundation of China(No.81201393)
文摘Summary: Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputa- tion. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical effi- cacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Am- putations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dress- ing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one pa- tient who suffered from severe septic shock. Emergent resuscitation was performed and the patient re- turned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenviroument and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.
基金funded by 948 Program of Ministry of Agriculture, China (2006-G52)
文摘Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.
文摘On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.
基金Supported by 973 Project(2009CB421302)Innovation Project of Chinese Academy of Sciences(KZCX2-YW-127)Youth Science Foundation of China(41401025)
文摘The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.
基金The project supported by the National Natural Science Foundation of China
文摘This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
文摘The cyclic irrigation system has been practiced in Japan for reducing pollutant outflow loadings from paddy fields. The cyclic irrigation is an irrigation method to reuse water by pumping drainage water and re-distributing it to the farmland. Quantification and assessment of the effects of the cyclic irrigation are needed to identify management options for maximizing the benefits of cyclic irrigation. The study was aimed at assessing loading characteristics from paddy field area under the cyclic irrigation and developing a model for simulating water and material flow in paddy field area that can be used as a management tool. The study was carried out in a paddy field in the Asagoi District, Oumihatiman city in Shiga Prefecture, Japan. Using the results of water quality analysis, the average net loadings of T-N and T-P were estimated for both cyclic and non-cyclic irrigation sites. The result indicates a higher nutrient absorption rate in the cyclic irrigation site than that in the non-cyclic irrigation site. The developed cyclic irrigation model showed good agreements between observed and simulated drainage volumes and nitrogen loadings. The scenario analysis by application of the model showed a potential of reducing the loading amount by increasing the cyclic irrigation ratio and reducing the amount of fertilizer application without affecting the rice yield.
文摘Drainage by chest tube thoracostomy is widely used in treatment of early empyema thoracis in children, but drainage with antiseptic lavage-irrigation is more frequent in our context since the last 20 years. This study was to determine which was more effective in our experience comparing chest tube drainage with catheter antiseptic lavage-irrigation versus drainage by chest tube thoracostomy alone in the management of empyema thoracis in children. Patients and Methods: Demographic, clinical and microbiological data on children with thoracic empyema undergoing drainage by chest tube thoracostomy alone or with antiseptic lavage-irrigation were obtained from 2 thoracic surgical centers from September 2008 to December 2014. It was a retrospective study included 246 children (137 boys and 109 girls) who were managed for empyema thoracis at the author’s different department of surgery. Outcomes analysis with respect to treatment efficacy, hospital duration, chest tube duration, hospital costs, and need for subsequent procedures was analyzed and compared in the 2 groups. Results: Drainage of pus and antiseptic irrigation resulted in resolution of pyrexia with improvement in general condition in 85.82% of patients in group 1 and by tube thoracostomy alone in 73.95% in group 2. There are a significant difference in the length of hospital stay (p = 0.022), duration of chest tubes in situ (p = 0.040), treatment coast (p = 0.015) and outcome of stage 2 empyema disease (p = 0.037) between the 2 groups. Conclusion: it seems that chest tube drainage with antiseptic lavage-irrigation method is associated with a higher efficacy, shorter length of hospital stay, shorter duration of chest tube in situ, less cost and better outcome of stage 2 empyema diseases than a treatment strategy that utilizes chest tube thoracostomy alone.
文摘<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div>
基金supported by the State Social Science Funds of China (14BGL093)the Specialized Research Fund for the Jointed Doctoral Program of Higher Education of China (20124105110006)the International Development Research Center (107093-001)
文摘Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters.
文摘Moderately severe and severe acute pancreatitis is characterized by local and systemic complications.Systemic complications predominate the early phase of acute pancreatitis while local complications are important in the late phase of the disease.Necrotic fluid collections represent the most important local complication.Drainage of these collections is indicated in the setting of infection,persistent or new onset organ failure,compressive or pressure symptoms,and intraabdominal hypertension.Percutaneous,endoscopic,and minimally invasive surgical drainage represents the various methods of drainage with each having its own advantages and disadvantages.These methods are often complementary.In this minireview,we discuss the indications,timing,and techniques of drainage of pancreatic fluid collections with focus on percutaneous catheter drainage.We also discuss the novel methods and techniques to improve the outcomes of percutaneous catheter drainage.
基金the National Natural Science Foundation of China(51939005)the Key Research and Development Program of Hebei Province,China(21327002D)+2 种基金the Hebei Forage Industry Innovation Team of Modern Agro-industry Technology Research System of China(HBCT2018160202)the Regional Collaborative Innovation Project of Xinjiang Uygur Autonomous Region of China(2021E02056)the China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs(CARS-34).
文摘Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system.
文摘Given article describes the current status of irrigated agriculture in the Ferghana province, Republic of Uzbekistan. Climatic, hydrogeological, and soil conditions and hydromodule zoning of the Water User Association (WUA) Oktepa Zilol were studied, and, on this basis, the farms growing cotton were selected. Variable and fixed costs and profitability of cotton-growing farms were analyzed. Based on the books of those farms, the crop budget was drawn up. Relationships between the profitability of cotton-growing farm and the irrigation sources used and soil fertility in the farm are explained. Finally, proposals for improvement of cotton production using various sources of irrigation under different degrees of groundwater salinity are provided.