期刊文献+
共找到97,515篇文章
< 1 2 250 >
每页显示 20 50 100
A Brief Summary of Finite Element Method Applications to Nonlinear Wave-structure Interactions
1
作者 王赤忠 吴国雄 《Journal of Marine Science and Application》 2011年第2期127-138,共12页
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ... We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six. 展开更多
关键词 finite element method (FEM) mesh generation nonlinear water waves wave-structure interactions
下载PDF
MPS-FEM Coupled Method for Study of Wave-Structure Interaction 被引量:3
2
作者 Guanyu Zhang Xiang Chen Decheng Wan 《Journal of Marine Science and Application》 CSCD 2019年第4期387-399,共13页
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam... Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained. 展开更多
关键词 MPS-FEM coupled method Fluid-structure interaction(FSI) Regular wave Wave impact pressure Structure deformation response
下载PDF
Investigation of Wave-Structure Interaction Using State of the Art CFD Techniques 被引量:1
3
作者 Jan Westphalen Deborah M. Greaves +6 位作者 Alison Raby Zheng Zheng Hu Derek M. Causon Clive G. Mingham Pourya Omidvar Peter K. Stansby Benedict D. Rogers 《Open Journal of Fluid Dynamics》 2014年第1期18-43,共26页
The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fu... The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent. 展开更多
关键词 WAVE Loading WAVE Energy wave-structure interaction Manchester Bobber CFD Physical Experiments FV CV-FE SPH Cartesian-Cut-Cell SPHysics AMAZON SC STAR CCM+ CFX
下载PDF
Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations 被引量:2
4
作者 Kai Ge Yiping Huang Yuanhui Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期263-272,共10页
The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu... The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations. 展开更多
关键词 Multi-task machine learning Density functional theory Hydrogen bond interaction MISCIBILITY SOLUBILITY
下载PDF
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:1
5
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
下载PDF
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability 被引量:1
6
作者 Changyu Leng Zongbin Zhao +5 位作者 Xuzhen Wang Yuliya V.Fedoseeva Lyubov G.Bulusheva Alexander V.Okotrub Jian Xiao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期184-192,共9页
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l... Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability. 展开更多
关键词 carbon composite electrostatic interaction metal-organic framework coating SELF-ASSEMBLY zinc-ion hybrid capacitor
下载PDF
Nonlinear waves and wave-structure interactions in marine hydrodynamics——Recent progress
7
作者 WANG Chun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3253-3256,共4页
We briefly review the recent progress in marine hydrodynamics.Developments in wave-structure interaction,wave-current interaction,Rogue waves,sloshing in liquid tanks and their applications in ocean engineering,such a... We briefly review the recent progress in marine hydrodynamics.Developments in wave-structure interaction,wave-current interaction,Rogue waves,sloshing in liquid tanks and their applications in ocean engineering,such as Floating Production Storage and Offloading facility(FPSO) and Very Large Floating Structure(VLFS),are presented. 展开更多
关键词 nonlinear waves wave-structure interaction marine hydrodynamics
原文传递
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
8
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
Ecological network analysis reveals complex responses of tree species life stage interactions to stand variables
9
作者 Hengchao Zou Huayong Zhang Tousheng Huang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16... Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities. 展开更多
关键词 Tree interactions Life stages interaction networks Ecological complexity
下载PDF
Study of the Relationship Between New Ionic Interaction Parameters and Salt Solubility in Electrolyte Solutions Based on Molecular Dynamics Simulation
10
作者 SUN Wenting HU Yangdong +5 位作者 ZHENG Jiahuan SUN Qichao Chen Xia DING Jiakun ZHANG Weitao WU Lianying 《Journal of Ocean University of China》 CAS CSCD 2024年第2期467-476,共10页
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is... Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions. 展开更多
关键词 molecular dynamics simulation interaction distance interaction time rate electrolyte aqueous solutions SOLUBILITY
下载PDF
Interatomic Interaction Models for Magnetic Materials:Recent Advances
11
作者 Tatiana S.Kostiuchenko Alexander V.Shapeev Ivan S.Novikov 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期54-66,共13页
Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or s... Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or spinpolarized density functional theory(DFT)served as the primary models for describing interatomic interactions in atomistic simulations of magnetic systems.Furthermore,in recent years,a new class of interatomic potentials known as magnetic machine-learning interatomic potentials(magnetic MLIPs)has emerged.These MLIPs combine the computational efficiency,in terms of CPU time,of empirical potentials with the accuracy of DFT calculations.In this review,our focus lies on providing a comprehensive summary of the interatomic interaction models developed specifically for investigating magnetic materials.We also delve into the various problem classes to which these models can be applied.Finally,we offer insights into the future prospects of interatomic interaction model development for the exploration of magnetic materials. 展开更多
关键词 MATERIALS interaction empirical
原文传递
Resistive field generation in intense proton beam interaction with solid targets
12
作者 W.Q.Wang J.J.Honrubia +2 位作者 Y.Yin X.H.Yang F.Q.Shao 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期35-43,共9页
The Brown-Preston-Singleton(BPS)stopping power model is added to our previously developed hybrid code to model ion beam-plasma interaction.Hybrid simulations show that both resistive field and ion scattering effects a... The Brown-Preston-Singleton(BPS)stopping power model is added to our previously developed hybrid code to model ion beam-plasma interaction.Hybrid simulations show that both resistive field and ion scattering effects are important for proton beam transport in a solid target,in which they compete with each other.When the target is not completely ionized,the self-generated resistive field effect dominates over the ion scattering effect.However,when the target is completely ionized,this situation is reversed.Moreover,it is found that Ohmic heating is important for higher current densities and materials with high resistivity.The energy fraction deposited as Ohmic heating can be as high as 20%-30%.Typical ion divergences with half-angles of about 5°-10°will modify the proton energy deposition substantially and should be taken into account. 展开更多
关键词 interaction BEAM INTENSE
下载PDF
Isotope Tracking of Surface Water Groundwater Interaction in the Beninese Part of the Iullemeden Aquifer System
13
作者 Houégnon Géraud Vinel Gbewezoun Samuel Yao Ganyaglo +4 位作者 Abdoukarim Alassane Samuel Boakye Dampare Gaya Salifou Orou Pete Alou Moussa Boukari Daouda Mama 《Journal of Water Resource and Protection》 CAS 2024年第7期489-501,共13页
The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys... The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin. 展开更多
关键词 BENIN West Africa Kandi basin Iullemeden Aquifer System Surface Water Groundwater interaction
下载PDF
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
14
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
下载PDF
Temporal trends and cohort variations of gender-specific major depressive disorders incidence in China:analysis based on the age-period-cohortinteraction model
15
作者 Xiyuan Hu Chao Guo 《General Psychiatry》 CSCD 2024年第4期473-479,共7页
Background Major depressive disorders(MDDs)impose substantial burdens on individuals and society;however,further detailed analysis is still needed for its long-term trends.Aims This study aimed to analyse the gender-s... Background Major depressive disorders(MDDs)impose substantial burdens on individuals and society;however,further detailed analysis is still needed for its long-term trends.Aims This study aimed to analyse the gender-specific temporal trends and cohort variations of MDD incidence among Chinese residents over the past three decades.Methods Employing the age-period-cohort-interaction model and leveraging data from the Global Burden of Disease Study 2019,this research identified and analysed incidence trends of MDD among Chinese males and females aged 5-94 years from 1990 to 2019 across three dimensions,encompassing age,period and birth cohort.Results The analysis reveals age-related effects,indicating heightened MDD risk among adolescents and older adults.Specifically,individuals entering the older adulthood at the age of 65-69 significantly increased the risk of MDD by 64.9%.People aged 90-94 years witnesseda 105.4%increase in MDD risk for the overall population,with females and males in this age group experiencing a 75.1%and 103.4%increase,respectively.In terms of period effects,the risk of MDD displayed a decline from 1990 to 1994,followed by a rebound in 2008.Cohort effects demonstrated diverse generational patterns,with generationⅠand generationⅢmanifesting opposing‘age-as-level'trends.GenerationⅡand generationⅣexhibited'cumulative disadvantage'and'cumulative advantage'patterns,respectively.Age effects indicated an overall higher risk of MDD incidence in females,while cohort effects showed greater variations of MDD incidence among females.Conclusions The study underscores the substantial effects of age,period and cohort on MDD across genders in China.Priority interventions targeting vulnerable populations,including children,adolescents,older adults,females and the post-millennium birth cohort,are crucial to mitigate the impact of MDD. 展开更多
关键词 interaction ANALYSIS INCIDENCE
下载PDF
Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
16
作者 牛真霞 高超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期209-215,共7页
Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce da... Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments. 展开更多
关键词 Bose-Einstein condensate quench interaction SOLITON vortex
原文传递
Dzyaloshinskii–Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures
17
作者 Yaoyuan Wang Long You +1 位作者 Kai Chang Hongxin Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期200-206,共7页
Topological magnetism with strong robustness,nanoscale dimensions and ultralow driving current density(106 A/m^(2))is promising for applications in information sensing,storage,and processing,and thus sparking widespre... Topological magnetism with strong robustness,nanoscale dimensions and ultralow driving current density(106 A/m^(2))is promising for applications in information sensing,storage,and processing,and thus sparking widespread research interest.Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices.Here,we propose a class of ultrathin heterostructures,Fe/Bi_(2)O_(2)X(X=S,Se,Te)by deposing metal Fe on quasi-two-dimensional(2D)bismuth oxychalcogenides Bi_(2)O_(2)X(X=S,Se,Te)with excellent ferroelectric/ferroelastic properties.Large Dzyaloshinskii–Moriya interaction(DMI)and topological magnetism can be realized.Our atomistic spin dynamics simulations demonstrate that field-free vortex–antivortex loops and sub-10 nm skyrmions exist in Fe/Bi_(2)O_(2)S and Fe/Bi_(2)O_(2)Se interfaces,respectively.These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces,which is extremely vital for spintronics applications. 展开更多
关键词 Dzyaloshinskii-Moriya interaction field-free topological magnetism
原文传递
The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons
18
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期986-1002,共17页
In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carri... In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law. 展开更多
关键词 GRAVITY Gravitational Field Gravitational interaction Informatons
下载PDF
Dynamics of Non-Markovianity, Quantum Correlations and Information Scrambling of Three Qubits Systems Interacting via Rashba Interaction
19
作者 Nasser Metwally Fawzeya Ebrahim 《Journal of Quantum Information Science》 CAS 2024年第2期52-67,共16页
The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate be... The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities. 展开更多
关键词 Markovianity Correlations Rashba interaction Scrambling Information
下载PDF
Probing the interaction between asphaltene-wax and its effects on the crystallization behavior of waxes in heavy oil via molecular dynamics simulation
20
作者 Yong Hu Xi Lu +3 位作者 Hai-Bo Wang Ji-Chao Fang Yi-Ning Wu JianFang Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2839-2848,共10页
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha... High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil. 展开更多
关键词 Heavy oil interaction mechanism ASPHALTENES Waxes Molecular dynamics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部