A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength c...A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.展开更多
A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rot...A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.展开更多
A simple and effective wavelength calibration scheme is proposed in a quartz enhanced photoacoustic spectroscopy (QEPAS) system for trace gas detection. A reference gas cell is connected an InGaAs photodetector for ...A simple and effective wavelength calibration scheme is proposed in a quartz enhanced photoacoustic spectroscopy (QEPAS) system for trace gas detection. A reference gas cell is connected an InGaAs photodetector for detecting the absorption intensity peak caused by the gas to calibrate the gas absorption center using distributed feedback laser diode (DFB-LD) with sawtooth wave driver current. The gas absorption wavelength calibration and gas sensing operations are conducted at a special internal to eliminate the wavelength shift of DFB-LD caused by the ambient fluctuations. Compared with the conventional wavelength modulation spectroscopy (WMS), this method uses a lower lock-in amplifier bandwidth and averaging algorithm to improve signal noise ratio (SNR). Water vapor is chosen as a sample gas to evaluate its performance. In the experiments, the impact of sawtooth wave frequency and lock-in amplifier bandwidth on the harmonic signal is analyzed, and the wavelength-calibration technique-based system achieves a minimum detection limit (MDL) of 790ppbv and SNR with 13.4 improvement factor compared with the conventional WMS system.展开更多
We discuss and calibrate the spectronaetry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem,...We discuss and calibrate the spectronaetry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem, three methods are put forward and discussed in detail with formulation calculation method, circular iteration method and interpolation. Interpolation is used to calibrate the concave reflection grating spectrometry system and the error is less than 1 nm. Four spectrum images that the system collected are given in this paper. The experimental results indicate that a spectrometry system can be based on concave reflection grating and be calibrated by interpolation.展开更多
Accurate and precise wavelength controlling of narrowband excimer lasers is essential for the lithography of an integrated circuit. High-precision wavelength tuning and calibration of a line-narrowed Ar F laser are pr...Accurate and precise wavelength controlling of narrowband excimer lasers is essential for the lithography of an integrated circuit. High-precision wavelength tuning and calibration of a line-narrowed Ar F laser are presented in this work. The laser spectrum is narrowed to a sub-picometer with a line narrowing system. Absolute wavelength calibration of the line-narrowed laser is performed based on the optogalvanic(OG) effect using iron hollow cathode discharge(HCD). An sccuracy of better than 0.1 pm for wavelength tuning and calibration is achieved with our homemade wavemeter.展开更多
A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an H...A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an HL-2A tokamak. An aberration corrected concave holographic grating with 1200 grooves/mm is adopted in the monochromator, which provides a wavelength dispersion of 40 A mm-1. The aperture is f/4.5. A channel electron multiplier is used as a detector. The time resolution of the system is 17 μs. Wavelength calibration of the system has been done by using a hollow cathode light source in the laboratory with helium and argon gases. The obtained signals of helium and argon spectra are very strong since the inner surface of the monochromator vacuum chamber is blackened and the stray light level is then significantly reduced. The optical property of the system has been examined by scanning the width of the entrance and exit slits. The system is then installed at the mid-port of the HL-2A tokamak and typical line emissions from the HL-2A plasma are measured. Time behaviors of edge impurity line emissions are observed with the fast time response system in different plasma confinement regimes, especially in the H-mode discharges. The result shows that the VUV_20 cm system works very well to measure the edge impurity line emissions in the edge localized modes phase of H-mode discharges.展开更多
We report a wavelength and power monitoring system based on a scanning MEMS filter as wavelength discriminator and a near threshold-biased Fabry-Perot diode laser as wavelength reference. This system is capable of mon...We report a wavelength and power monitoring system based on a scanning MEMS filter as wavelength discriminator and a near threshold-biased Fabry-Perot diode laser as wavelength reference. This system is capable of monitoring 250 channels of DWDM signal at 25 GHz ITU Grid with an error of less than ±8 pm.展开更多
基金partially supported by National Natural Science Foundation of China(Nos.U23A2077,12175278,12205072)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE0304002,2018YFE0303103)+2 种基金the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021)the University Synergy Innovation Program of Anhui Province(No.GXXT2021-029)。
文摘A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.
基金supported by National Natural Science Foundation of China(Nos.11175208,11305212 and 11405212)the National Magnetic Confinement Fusion Science Program of China(No.2013GB112004)JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.
基金This work was supported by Research Fund for the Doctoral Program of Liaocheng University (Grant No. 318051543) and the National Natural Science Foundation of China (Grant No. 61475085).
文摘A simple and effective wavelength calibration scheme is proposed in a quartz enhanced photoacoustic spectroscopy (QEPAS) system for trace gas detection. A reference gas cell is connected an InGaAs photodetector for detecting the absorption intensity peak caused by the gas to calibrate the gas absorption center using distributed feedback laser diode (DFB-LD) with sawtooth wave driver current. The gas absorption wavelength calibration and gas sensing operations are conducted at a special internal to eliminate the wavelength shift of DFB-LD caused by the ambient fluctuations. Compared with the conventional wavelength modulation spectroscopy (WMS), this method uses a lower lock-in amplifier bandwidth and averaging algorithm to improve signal noise ratio (SNR). Water vapor is chosen as a sample gas to evaluate its performance. In the experiments, the impact of sawtooth wave frequency and lock-in amplifier bandwidth on the harmonic signal is analyzed, and the wavelength-calibration technique-based system achieves a minimum detection limit (MDL) of 790ppbv and SNR with 13.4 improvement factor compared with the conventional WMS system.
基金This work was supported by the National "863" HiTech Program of China (No. 2002AA135Q40), the Natural Science Foundation of Beijing (No. 4032016), and the Basic Research Foundation of Beijing Institute of Technology (BIT_UBF_200301F16).
文摘We discuss and calibrate the spectronaetry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem, three methods are put forward and discussed in detail with formulation calculation method, circular iteration method and interpolation. Interpolation is used to calibrate the concave reflection grating spectrometry system and the error is less than 1 nm. Four spectrum images that the system collected are given in this paper. The experimental results indicate that a spectrometry system can be based on concave reflection grating and be calibrated by interpolation.
基金supported by the National Science and Technology Major Project(No.2013ZX02202003)the National Key Research and Development Program(No.2016YFB0402201)+4 种基金K.C.Wong Education Foundation,the Program of Shanghai Technology Research Leader(No.17XD1424800)the Shanghai Sailing Program of Talented Youth in Science and Technology(No.17YF1421200)the Key Technologies R&D Program of Jiangsu(Nos.BE2014001 and BE2016005-4)the Natural Science Foundation of Shanghai(Nos.16ZR1440100and 16ZR1440200)the NSAF Foundation of National Natural Science Foundation of China(Nos.U1330134 and 61405202)
文摘Accurate and precise wavelength controlling of narrowband excimer lasers is essential for the lithography of an integrated circuit. High-precision wavelength tuning and calibration of a line-narrowed Ar F laser are presented in this work. The laser spectrum is narrowed to a sub-picometer with a line narrowing system. Absolute wavelength calibration of the line-narrowed laser is performed based on the optogalvanic(OG) effect using iron hollow cathode discharge(HCD). An sccuracy of better than 0.1 pm for wavelength tuning and calibration is achieved with our homemade wavemeter.
基金partly supported by National Natural Science Foundation of China (Nos. 11375057 and 11505051)the National Magnetic Confinement Fusion Program of China (Nos. 2014GB108003 and 2015GB104003)
文摘A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an HL-2A tokamak. An aberration corrected concave holographic grating with 1200 grooves/mm is adopted in the monochromator, which provides a wavelength dispersion of 40 A mm-1. The aperture is f/4.5. A channel electron multiplier is used as a detector. The time resolution of the system is 17 μs. Wavelength calibration of the system has been done by using a hollow cathode light source in the laboratory with helium and argon gases. The obtained signals of helium and argon spectra are very strong since the inner surface of the monochromator vacuum chamber is blackened and the stray light level is then significantly reduced. The optical property of the system has been examined by scanning the width of the entrance and exit slits. The system is then installed at the mid-port of the HL-2A tokamak and typical line emissions from the HL-2A plasma are measured. Time behaviors of edge impurity line emissions are observed with the fast time response system in different plasma confinement regimes, especially in the H-mode discharges. The result shows that the VUV_20 cm system works very well to measure the edge impurity line emissions in the edge localized modes phase of H-mode discharges.
文摘We report a wavelength and power monitoring system based on a scanning MEMS filter as wavelength discriminator and a near threshold-biased Fabry-Perot diode laser as wavelength reference. This system is capable of monitoring 250 channels of DWDM signal at 25 GHz ITU Grid with an error of less than ±8 pm.