本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述...本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述性表现。60年代末70年代初处于美国女性主义的第二次浪潮,众多美国名校的年轻白人女大学生,不断为女性的参政、就业、医疗、最低工资等争取更多的权利,而到了80年代遭到美国保守主义的强烈打击,追求自由平等的女性主义运动跌入低谷。第二次女性主义运动的跌宕正是Art to Wear艺术运动的发展时期,艺术学院在读青年女生们发起Art to Wear艺术运动,她们在保守主义与激进主义的影响下寻求精神、生活的平衡,极力反叛女性束身塑形来博得男性视觉愉悦、通过同性的嫉妒来肯定自身价值。她们对家庭、事业、社会地位开始深思,通过作品叙述对社会性别与身份认定的迷茫,表达保守与激进思想的内心纠结。展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and...Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.展开更多
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ...The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.展开更多
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse...Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.展开更多
The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling pro...The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling processes.Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study;as such,standards detail procedures to measure and assess tool wear for various tools.Measuring wear in machining tools can be time-consuming,as the process is usually manual,requiring human interaction and judgment.In the present work,an automated offline flank wear measurement algorithm was developed in Python.The algorithm measures the flank wear of coated end-mills and slot drills from Scanning Electron Microscopy(SEM)images,according to the ISO 8688 standard,following the same wear measurement procedure.SEM images acquired with different magnifications and tools with varying machining parameters were analyzed using the developed algorithm.The flank wear measurements were then compared to the manually obtained,achieving relative errors for the most common magnifications of around 2.5%.Higher magnifications were also tested,yielding a maximum relative error of 13.4%.The algorithm can measure batches of images quickly on an ordinary personal computer,analyzing and measuring a 10-image batch in around 30 s,a process that would require around 30 min when performed manually by a skilled operator.Therefore,it can be a reliable alternative to measuring flank wear on many tools from SEM images,with the possibility of being adjusted for other wear measurements on different kinds of tools and different image types,for example,on images obtained by optical microscopy.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect ...Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.展开更多
Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by ad...Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.展开更多
This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are...This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.展开更多
Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(T...Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(Tγ).Amidst its use,it becomes apparent that Tγ,while valuable,fails to provide a comprehensive reflection of the actual material removal and actual contact format,which means that using only Tγas a target for optimization of profiles is not ideal.In this work,three different freight wagons are evaluated:a meter-gauge and a broad-gauge heavy haul vehicles from South American railways,and a standard-gauge freight vehicle operated in Europe,with different axle loads and dissimilar new wheel/rail profiles.These vehicles are subjected to comprehensive multibody simulations on various tracks.The simulations aimed to elucidate the intricate relationship between different wear indicators:Tγ,wear index,material removal,and maximum wear depth,under diverse curves,non-compensated lateral accelerations(A_(nc)),and speeds.Some findings showed a correlation of 0.96 between Tγand wear depth and 0.82 between wear index and material removed for the outer wheel.From the results,the Tγis better than the wear index to be used when analyzing wear depth while the wear index is more suited to foresee the material lost.The results also show the low influence of A_(nc)on wear index and Tγ.By considering these factors together,the study aims to improve the understanding of wheel-rail wear by selecting the best wear analysis approaches based on the effectiveness of each parameter.展开更多
Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.0...Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation.展开更多
The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix...The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.展开更多
Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term o...Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.展开更多
To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employ...To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s...The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.展开更多
文摘本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述性表现。60年代末70年代初处于美国女性主义的第二次浪潮,众多美国名校的年轻白人女大学生,不断为女性的参政、就业、医疗、最低工资等争取更多的权利,而到了80年代遭到美国保守主义的强烈打击,追求自由平等的女性主义运动跌入低谷。第二次女性主义运动的跌宕正是Art to Wear艺术运动的发展时期,艺术学院在读青年女生们发起Art to Wear艺术运动,她们在保守主义与激进主义的影响下寻求精神、生活的平衡,极力反叛女性束身塑形来博得男性视觉愉悦、通过同性的嫉妒来肯定自身价值。她们对家庭、事业、社会地位开始深思,通过作品叙述对社会性别与身份认定的迷茫,表达保守与激进思想的内心纠结。
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
基金supported by the National Natural Science Foundation of China(Grant Nos.52002344,U2034210,and 61960206010)the Development Project of State Key Laboratory of Rail Transit Vehicle System(Grant No.2022TPL_T09)。
文摘Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.
基金support of the“National R&D Project for Smart Construction Technology (Grant No.RS-2020-KA157074)”funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land,Infrastructure and Transport,and managed by the Korea Expressway Corporation.
文摘The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.
基金Project(2021YFC2900200)supported by the National Key Research and Development Project of ChinaProject(20230203114SF)supported by the Key Research and Development Project of Jilin Province,China。
文摘Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.
文摘The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling processes.Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study;as such,standards detail procedures to measure and assess tool wear for various tools.Measuring wear in machining tools can be time-consuming,as the process is usually manual,requiring human interaction and judgment.In the present work,an automated offline flank wear measurement algorithm was developed in Python.The algorithm measures the flank wear of coated end-mills and slot drills from Scanning Electron Microscopy(SEM)images,according to the ISO 8688 standard,following the same wear measurement procedure.SEM images acquired with different magnifications and tools with varying machining parameters were analyzed using the developed algorithm.The flank wear measurements were then compared to the manually obtained,achieving relative errors for the most common magnifications of around 2.5%.Higher magnifications were also tested,yielding a maximum relative error of 13.4%.The algorithm can measure batches of images quickly on an ordinary personal computer,analyzing and measuring a 10-image batch in around 30 s,a process that would require around 30 min when performed manually by a skilled operator.Therefore,it can be a reliable alternative to measuring flank wear on many tools from SEM images,with the possibility of being adjusted for other wear measurements on different kinds of tools and different image types,for example,on images obtained by optical microscopy.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
基金supported by the Xinjiang Tianchi Talent Introduction Plan (51052300585)the Fundamental Research Funds for Autonomous Region Universities (XJEDU2022P002)+1 种基金the Natural science foundation project of Xinjiang Uygur Autonomous Region (2023D01C192,2023D01C33)the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region (2023D14001)。
文摘Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.
基金financially supported by the Scientific Research Project Coordinatorship (BAP) of Yildiz Technical University (YTU) (Project No: FYL-2021-3825)。
文摘Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.
基金supported by the National Natural Science Foundation of China Youth Science Foundation of China(Grant No.52308388)the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210).
文摘This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.
基金funding this study and technical support,and also to CNPQ(Grant Number 315304/2018-9)CAPES(Grant Number 88887.892546/2023-00),which funded partially this project.
文摘Railway infrastructure relies on the dynamic interaction between wheels and rails;thus,assessing wheel wear is a critical aspect of maintenance and safety.This paper focuses on the wheel-rail wear indicator T-gamma(Tγ).Amidst its use,it becomes apparent that Tγ,while valuable,fails to provide a comprehensive reflection of the actual material removal and actual contact format,which means that using only Tγas a target for optimization of profiles is not ideal.In this work,three different freight wagons are evaluated:a meter-gauge and a broad-gauge heavy haul vehicles from South American railways,and a standard-gauge freight vehicle operated in Europe,with different axle loads and dissimilar new wheel/rail profiles.These vehicles are subjected to comprehensive multibody simulations on various tracks.The simulations aimed to elucidate the intricate relationship between different wear indicators:Tγ,wear index,material removal,and maximum wear depth,under diverse curves,non-compensated lateral accelerations(A_(nc)),and speeds.Some findings showed a correlation of 0.96 between Tγand wear depth and 0.82 between wear index and material removed for the outer wheel.From the results,the Tγis better than the wear index to be used when analyzing wear depth while the wear index is more suited to foresee the material lost.The results also show the low influence of A_(nc)on wear index and Tγ.By considering these factors together,the study aims to improve the understanding of wheel-rail wear by selecting the best wear analysis approaches based on the effectiveness of each parameter.
基金Project (51074106) supported by the National Natural Science Foundation of ChinaProject (2009AA033501) supported by the Hi-Tech Research and Development Program of China+1 种基金Project (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (20100480586) supported by Postdoctoral Science Foundation of China
文摘Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation.
基金Project supported by the Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University), ChinaProject (GJJ11094) supported by Science Funds of Jiangxi Provincial Education Project on Department, China
文摘The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.
基金Supported by National Natural Science Foundation of China (Grant No.52275061)。
文摘Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.
基金Supported by National Natural Science Foundation of China (Grant No.51935007)。
文摘To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.