期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
改进型加权KNN算法的不平衡数据集分类 被引量:26
1
作者 王超学 潘正茂 +2 位作者 马春森 董丽丽 张涛 《计算机工程》 CAS CSCD 2012年第20期160-163,168,共5页
K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚... K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚类,按照权重分配模型计算各训练样本的权重,通过改进的KNN算法对测试样本进行分类。基于UCI数据集的大量实验结果表明,GAK-KNN算法的识别率和整体性能都优于传统KNN算法及其他改进算法。 展开更多
关键词 不平衡数据集 分类 K最邻近算法 权重分配模型 遗传算法 K-MEANS算法
下载PDF
基于KNN的特征自适应加权自然图像分类研究 被引量:17
2
作者 侯玉婷 彭进业 +1 位作者 郝露微 王瑞 《计算机应用研究》 CSCD 北大核心 2014年第3期957-960,共4页
针对自然图像类型广泛、结构复杂、分类精度不高的实际问题,提出了一种为自然图像不同特征自动加权值的K-近邻(K-nearest neighbors,KNN)分类方法。通过分析自然图像的不同特征对于分类结果的影响,采用基因遗传算法求得一组最优分类权... 针对自然图像类型广泛、结构复杂、分类精度不高的实际问题,提出了一种为自然图像不同特征自动加权值的K-近邻(K-nearest neighbors,KNN)分类方法。通过分析自然图像的不同特征对于分类结果的影响,采用基因遗传算法求得一组最优分类权值向量解,利用该最优权值对自然图像纹理和颜色两个特征分别进行加权,最后用自适应加权K-近邻算法实现对自然图像的分类。实验结果表明,在用户给定分类精度需求和低时间复杂度的约束下,算法能快速、高精度地进行自然图像分类。提出的自适应加权K-近邻分类方法对于门类繁多的自然图像具有普遍适用性,可以有效地提高自然图像的分类性能。 展开更多
关键词 K-近邻算法 基因算法 自然图像分类 特征加权
下载PDF
基于KNN-ANN算法的边际电价预测 被引量:5
3
作者 周芳 《计算机工程》 CAS CSCD 北大核心 2010年第11期188-189,194,共3页
在电力市场中,价格一直受到买卖双方的广泛关注。但是,电价影响因素的不确定性给电价的预测带来难度。针对该问题,提出一种通过结合人工神经网络和KNN算法来进行时间序列预测的模型,用KNN算法找出历史数据中相似的数据子序列集合(最近... 在电力市场中,价格一直受到买卖双方的广泛关注。但是,电价影响因素的不确定性给电价的预测带来难度。针对该问题,提出一种通过结合人工神经网络和KNN算法来进行时间序列预测的模型,用KNN算法找出历史数据中相似的数据子序列集合(最近邻),并用人工神经网络来寻找这些最近邻的最优权重,得出预测的时间序列。以美国纽约州电力市场的电价数据进行实验分析,同时比较了利用ARIMA算法以及NaiveI预测的结果,证明该方法简单、有效。 展开更多
关键词 电价预测 人工神经网络 knn算法 权重
下载PDF
Optimizing Clear Air Turbulence Forecasts Using the K-Nearest Neighbor Algorithm
4
作者 Aoqi GU Ye WANG 《Journal of Meteorological Research》 CSCD 2024年第6期1064-1077,共14页
The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.Howe... The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations. 展开更多
关键词 clear air turbulence k-nearest neighbor(knn)algorithm the ECMWF fifth-generation reanalysis dataset(ERA5) turbulence prediction
原文传递
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:8
5
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(knn) local INTENSIFICATION memetic algorithm
下载PDF
基于EDA的加权KNN分类算法
6
作者 谢雨寒 潘峰 《计算机时代》 2023年第8期37-40,共4页
针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优... 针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优等一系列操作,经过若干次迭代,最终获得使样本分类准确率达到最高的权重向量。通过对多个数据集进行分类,结果表明,EDA-KNN算法能够显著提升对于不平衡数据集分类的准确率,分类器性能稳定。 展开更多
关键词 不平衡数据集 knn算法 分布估计算法 矩阵结构 分级权重
下载PDF
基于改进AP选择和K最近邻法算法的室内定位技术 被引量:14
7
作者 李新春 侯跃 《计算机应用》 CSCD 北大核心 2017年第11期3276-3280,3287,共6页
针对复杂的室内环境和在传统K最近邻法(KNN)算法中认为信号差相等时物理距离就相等两个问题,提出了一种新的接入点(AP)选择方法和基于缩放权重的KNN室内定位算法。首先,改进AP的选择方法,使用箱形图过滤接收信号强度(RSS)的异常值,初步... 针对复杂的室内环境和在传统K最近邻法(KNN)算法中认为信号差相等时物理距离就相等两个问题,提出了一种新的接入点(AP)选择方法和基于缩放权重的KNN室内定位算法。首先,改进AP的选择方法,使用箱形图过滤接收信号强度(RSS)的异常值,初步建立指纹库,剔除指纹库中丢失率高的AP,使用标准偏差分析RSS的变化,选择干扰较小的前n个AP;其次,在传统的KNN算法中引入缩放权重,构建一个基于RSS的缩放权重模型;最后,计算出获得最小有效信号距离的前K个参考点坐标,得到未知位置坐标。定位仿真实验中,仅对AP选择方法进行改进的算法平均定位误差比传统的KNN算法降低了21.9%,引入缩放权重算法的平均定位误差为1.82 m,比传统KNN降低了53.6%。 展开更多
关键词 K最近邻法算法 室内定位 箱形图 标准偏差 缩放权重 定位精度
下载PDF
一种基于智能手机四向RSS指纹的室内定位方法 被引量:3
8
作者 俞佳豪 余敏 《全球定位系统》 CSCD 2021年第5期48-54,共7页
针对传统位置指纹匹配算法只能表征单一维度指纹点特征的问题,提出了一种基于智能手机四向接收信号强度(RSS)指纹的室内定位方法.该方法通过离线阶段的数据采集、特征提取、接入点(AP)权重分配三个步骤提取了更丰富的指纹点信息,在线阶... 针对传统位置指纹匹配算法只能表征单一维度指纹点特征的问题,提出了一种基于智能手机四向接收信号强度(RSS)指纹的室内定位方法.该方法通过离线阶段的数据采集、特征提取、接入点(AP)权重分配三个步骤提取了更丰富的指纹点信息,在线阶段使用改进的K最近邻(KNN)分类算法将测试点与指纹点匹配.在操作系统版本为Android 10的智能手机上使用蓝牙传感器进行实验验证,随机选取30个测试点,得到的实验结果表明:1)四向RSS指纹优于传统的单向RSS指纹,在相同的实验条件下使用四向RSS指纹最高可降低13.4%的定位误差;2)使用四向RSS指纹结合提出的算法,平均定位误差在1.61 m,且响应时间在毫秒级. 展开更多
关键词 室内定位 ANDROID系统 四向接收信号强度(RSS)指纹 接入点(AP)权重分配 K最近邻(knn)算法
下载PDF
基于时空加权KNN算法的1988-2015年渤海海冰空间分布重建
9
作者 孙静琪 李晨睿 +2 位作者 许映军 颜钰 邓磊 《海洋环境科学》 CAS CSCD 北大核心 2024年第3期438-447,共10页
利用AVHRR和MODIS遥感解译数据,结合与渤海海冰面积相关程度高的日平均温度、3 d-1.8℃积温、累积冻冰度日和累积融冰度日等气象因子数据,基于时空加权KNN算法构建了空间分辨率为1 km海冰空间补全模型,重建了1988-2015年渤海海冰空间分... 利用AVHRR和MODIS遥感解译数据,结合与渤海海冰面积相关程度高的日平均温度、3 d-1.8℃积温、累积冻冰度日和累积融冰度日等气象因子数据,基于时空加权KNN算法构建了空间分辨率为1 km海冰空间补全模型,重建了1988-2015年渤海海冰空间分布连续日数据集。渤海海冰空间分布补全均方误差为0.03,分类正确率均为87%以上,28年平均正确率为91.87%,均方误差与海冰遥感影像数据缺失率呈中度正相关。结果表明,该模型均方误差较小,且分类正确率高,可以用于渤海海冰空间分布数据补全,空间分辨率高且补全速度快,在海洋环境安全管理领域,尤其对有冰海域海冰灾害风险管理方面有重要的价值。 展开更多
关键词 渤海海冰 加权knn算法 海冰空间分布 海冰数据重建
原文传递
Adaptive Fault Detection Scheme Using an Optimized Self-healing Ensemble Machine Learning Algorithm
10
作者 Levent Yavuz Ahmet Soran +2 位作者 AhmetÖnen Xiangjun Li S.M.Muyeen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第4期1145-1156,共12页
This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than usin... This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect. 展开更多
关键词 Decision tree(DT) ensemble machine learning algorithm fault detection islanding operation k-nearest neighbor(knn) linear discriminant analysis(LDA) logistic regression(LR) Naive Bayes(NB) self-healing algorithm
原文传递
KNN spatio-temporal attention graph convolutional network for traffic flow repairing
11
作者 Zhang Xijun Li Zhe 《The Journal of China Universities of Posts and Telecommunications》 2025年第1期48-60,共13页
In the process of obtaining information from the actual traffic network, the incomplete data set caused by missing data reduces the validity of the data and the performance of the data-driven model. A traffic flow rep... In the process of obtaining information from the actual traffic network, the incomplete data set caused by missing data reduces the validity of the data and the performance of the data-driven model. A traffic flow repair model based on a k-nearest neighbor(KNN) spatio-temporal attention(STA) graph convolutional network(KAGCN) was proposed in this paper. Firstly, the missing data is initially interpolated by the KNN algorithm, and then the complete index set(CIS) is constructed by combining the adjacency matrix of the network structure. Secondly, a STA mechanism is added to the CIS to capture the spatio-temporal correlation between the data. Then, the graph neural network(GNN) is used to reconstruct the data by spatio-temporal correlation, and the reconstructed data set is used to correct and optimize the initial interpolation data set to obtain the final repair result. Finally, the PEMSD4 data set is used to simulate the missing data in the actual road network, and experiments are carried out under the missing rate of 30%, 50%, and 70% respectively. The results show that the mean absolute error(MAE), root mean square error(RMSE), and mean absolute percentage error(MAPE) of the KAGCN model increased by at least 3.83%, 2.80%, and 5.33%, respectively, compared to the other baseline models at different deletion rates. It proves that the KAGCN model is effective in repairing the missing data of traffic flow. 展开更多
关键词 missing data repair complete index set(CIS) interpolation-reconstruction k-nearest neighbor(knn)algorithm spatio-temporal correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部