The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.Howe...The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than usin...This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect.展开更多
In the process of obtaining information from the actual traffic network, the incomplete data set caused by missing data reduces the validity of the data and the performance of the data-driven model. A traffic flow rep...In the process of obtaining information from the actual traffic network, the incomplete data set caused by missing data reduces the validity of the data and the performance of the data-driven model. A traffic flow repair model based on a k-nearest neighbor(KNN) spatio-temporal attention(STA) graph convolutional network(KAGCN) was proposed in this paper. Firstly, the missing data is initially interpolated by the KNN algorithm, and then the complete index set(CIS) is constructed by combining the adjacency matrix of the network structure. Secondly, a STA mechanism is added to the CIS to capture the spatio-temporal correlation between the data. Then, the graph neural network(GNN) is used to reconstruct the data by spatio-temporal correlation, and the reconstructed data set is used to correct and optimize the initial interpolation data set to obtain the final repair result. Finally, the PEMSD4 data set is used to simulate the missing data in the actual road network, and experiments are carried out under the missing rate of 30%, 50%, and 70% respectively. The results show that the mean absolute error(MAE), root mean square error(RMSE), and mean absolute percentage error(MAPE) of the KAGCN model increased by at least 3.83%, 2.80%, and 5.33%, respectively, compared to the other baseline models at different deletion rates. It proves that the KAGCN model is effective in repairing the missing data of traffic flow.展开更多
基金Supported by the Nanjing University of Aeronautics and Astronautics(KFB2305601).
文摘The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.
文摘This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect.
基金supported by the National Natural Science Foundation of China (62162040)the Gansu Provincial Science and Technology Plan Funding Key Project of Natural Science Foundation of China (22JR5RA226)+1 种基金the Gansu Province Higher Education Innovation Fund-Funded Project (2021A-028)the Gansu Provincial Science and Technology Program Funding Project (21ZD4GA028)。
文摘In the process of obtaining information from the actual traffic network, the incomplete data set caused by missing data reduces the validity of the data and the performance of the data-driven model. A traffic flow repair model based on a k-nearest neighbor(KNN) spatio-temporal attention(STA) graph convolutional network(KAGCN) was proposed in this paper. Firstly, the missing data is initially interpolated by the KNN algorithm, and then the complete index set(CIS) is constructed by combining the adjacency matrix of the network structure. Secondly, a STA mechanism is added to the CIS to capture the spatio-temporal correlation between the data. Then, the graph neural network(GNN) is used to reconstruct the data by spatio-temporal correlation, and the reconstructed data set is used to correct and optimize the initial interpolation data set to obtain the final repair result. Finally, the PEMSD4 data set is used to simulate the missing data in the actual road network, and experiments are carried out under the missing rate of 30%, 50%, and 70% respectively. The results show that the mean absolute error(MAE), root mean square error(RMSE), and mean absolute percentage error(MAPE) of the KAGCN model increased by at least 3.83%, 2.80%, and 5.33%, respectively, compared to the other baseline models at different deletion rates. It proves that the KAGCN model is effective in repairing the missing data of traffic flow.