期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Distributed and Weighted Extreme Learning Machine for Imbalanced Big Data Learning 被引量:10
1
作者 Zhiqiong Wang Junchang Xin +4 位作者 Hongxu Yang Shuo Tian Ge Yu Chenren Xu Yudong Yao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第2期160-173,共14页
The Extreme Learning Machine(ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning(IL) or Big Data(BD) learning. However, they are unable to solve both imbalanced ... The Extreme Learning Machine(ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning(IL) or Big Data(BD) learning. However, they are unable to solve both imbalanced and large-volume data learning problems. This study addresses the IL problem in BD applications. The Distributed and Weighted ELM(DW-ELM) algorithm is proposed, which is based on the Map Reduce framework. To confirm the feasibility of parallel computation, first, the fact that matrix multiplication operators are decomposable is illustrated.Then, to further improve the computational efficiency, an Improved DW-ELM algorithm(IDW-ELM) is developed using only one Map Reduce job. The successful operations of the proposed DW-ELM and IDW-ELM algorithms are finally validated through experiments. 展开更多
关键词 weighted extreme learning machine(ELM) imbalanced big data MapReduce framework user-defined counter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部