The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s ...The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.展开更多
A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packe...A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.展开更多
An efficient congestion control approach should gain weighted fairness and also robustness against external disturbances.Moreover,variations in the number of active sources cause a network to operate as a switched sys...An efficient congestion control approach should gain weighted fairness and also robustness against external disturbances.Moreover,variations in the number of active sources cause a network to operate as a switched system in which the initial values affect the transient response.The main contribution of this article is to design a rate-based adaptive robust queue management contemplating the initial value compensation(IVC).The congestion is avoided via Two-Degree-of-Freedom Internal Model Control protocol as a robust procedure.The utilisation factors are designated according to the delay of each source(weighted fairness)in which the sources will use the maximum value of the bottleneck capacity(maximum utilisation).On the other hand,the number of the users is determined adaptively and effects of non-zero initial values are eliminated through a protocol called IVC.Simulation results through Network Simulator 2 and Simulink software confirm the analytical results and the efficacy of the proposed method.展开更多
With the objective of taking full use of channel resource, we proposed two utility based dynamic subcarrier allocation (DSA) algorithms for the single carrier frequency division multiple access (SC-FDMA) system, w...With the objective of taking full use of channel resource, we proposed two utility based dynamic subcarrier allocation (DSA) algorithms for the single carrier frequency division multiple access (SC-FDMA) system, which are the proportional fair frugality constrained (PF-FC) algorithm and the weighted proportional fair frugality constrained (WPF-FC) algorithm. The two proposed algorithms are designed under the frugality constraint (FC) control consideration so as to avoid service rate waste and improve the spectrum efficiency. Moreover, the queuing buffer model in this paper is established on a finite size structure rather than the traditional infinite queuing manner, which is more consistent with the practical transmission condition. Simulation results indicate that the two proposed algorithms can both achieve significantly better system rate-sum capacity and quality of service (QoS) performance than their primary algorithms, and are more applicable for the heterogeneous traffic.展开更多
文摘The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.
基金National Natural Science Foundation of China ( No.60572157)Sharp Corporation of Japanthe Hi-Tech Research and Development Program(863) of China (No.2003AA123310)
文摘A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.
文摘An efficient congestion control approach should gain weighted fairness and also robustness against external disturbances.Moreover,variations in the number of active sources cause a network to operate as a switched system in which the initial values affect the transient response.The main contribution of this article is to design a rate-based adaptive robust queue management contemplating the initial value compensation(IVC).The congestion is avoided via Two-Degree-of-Freedom Internal Model Control protocol as a robust procedure.The utilisation factors are designated according to the delay of each source(weighted fairness)in which the sources will use the maximum value of the bottleneck capacity(maximum utilisation).On the other hand,the number of the users is determined adaptively and effects of non-zero initial values are eliminated through a protocol called IVC.Simulation results through Network Simulator 2 and Simulink software confirm the analytical results and the efficacy of the proposed method.
基金supported by the Fundamental Research Funds for the Central Universities of China(HEUCF130807)the Heilongjiang Province Natural Science Foundation for the Youth(QC2012C070/F010106)the National Natural Science Foundation of China(61073183)
文摘With the objective of taking full use of channel resource, we proposed two utility based dynamic subcarrier allocation (DSA) algorithms for the single carrier frequency division multiple access (SC-FDMA) system, which are the proportional fair frugality constrained (PF-FC) algorithm and the weighted proportional fair frugality constrained (WPF-FC) algorithm. The two proposed algorithms are designed under the frugality constraint (FC) control consideration so as to avoid service rate waste and improve the spectrum efficiency. Moreover, the queuing buffer model in this paper is established on a finite size structure rather than the traditional infinite queuing manner, which is more consistent with the practical transmission condition. Simulation results indicate that the two proposed algorithms can both achieve significantly better system rate-sum capacity and quality of service (QoS) performance than their primary algorithms, and are more applicable for the heterogeneous traffic.