期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
1
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(PV)modules weighted mean of vectors algorithm(INFO) renewable energy static PV models dynamic PV models solar energy
下载PDF
K-means聚类中心的鲁棒优化算法 被引量:7
2
作者 罗倩 《计算机工程与设计》 北大核心 2015年第9期2395-2400,共6页
针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等... 针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等问题。通过对仿真数据和标准数据集的实验,验证了采用该算法收敛的聚类中心非常接近标准数据集的实际中心,具有较优的聚类准确性、鲁棒性和收敛速度。 展开更多
关键词 K-meanS聚类算法 初始聚类中心 邻域距离加权 聚类优化 鲁棒算法
下载PDF
结合优化支持向量机与K-means++的工控系统入侵检测方法 被引量:10
3
作者 陈万志 徐东升 +1 位作者 张静 唐雨 《计算机应用》 CSCD 北大核心 2019年第4期1089-1094,共6页
针对工业控制系统传统单一检测算法模型对不同攻击类型检测率和检测速度不佳的问题,提出一种优化支持向量机和K-means++算法结合的入侵检测模型。首先利用主成分分析法(PCA)对原始数据集进行预处理,消除其相关性;其次在粒子群优化(PSO)... 针对工业控制系统传统单一检测算法模型对不同攻击类型检测率和检测速度不佳的问题,提出一种优化支持向量机和K-means++算法结合的入侵检测模型。首先利用主成分分析法(PCA)对原始数据集进行预处理,消除其相关性;其次在粒子群优化(PSO)算法的基础上加入自适应变异过程避免在训练的过程中陷入局部最优解;然后利用自适应变异粒子群优化(AMPSO)算法优化支持向量机的核函数和惩罚参数;最后利用密度中心法改进K-means算法与优化后的支持向量机组合成入侵检测模型,从而实现工业控制系统的异常检测。实验结果表明,所提方法在检测速度和对各类攻击的检测率上得到明显提升。 展开更多
关键词 工业控制系统 主成分分析 粒子群优化算法 支持向量机 密度中心法 K-meanS算法
下载PDF
基于向量加权平均优化的盲源分离LTE-M同频干扰检测
4
作者 王乃鑫 赵恒凯 +1 位作者 何庆军 郑国莘 《工业控制计算机》 2025年第2期45-47,共3页
轨道交通LTE-M(Long Term Evolution-Metro,基于轨道交通的长期演进)同频干扰检测关乎列控信号传输的可靠性,提出一种基于INFO(weIghted meaNoFvectOrs,基于向量加权平均)算法的盲源分离方法,即INFO-BSS。该方法以混合信号的最大化负熵... 轨道交通LTE-M(Long Term Evolution-Metro,基于轨道交通的长期演进)同频干扰检测关乎列控信号传输的可靠性,提出一种基于INFO(weIghted meaNoFvectOrs,基于向量加权平均)算法的盲源分离方法,即INFO-BSS。该方法以混合信号的最大化负熵为目标函数,用INFO优化算法替代牛顿迭代法,解决了牛顿迭代法初始参数易设置不当以及容易陷入局部最优的问题。仿真结果对比表明,在不同分辨率带宽、不同信干比等条件下,INFO-BSS的检测性能都要优于常规算法。 展开更多
关键词 同频干扰 LTE-M 盲源分离 向量加权平均优化算法
下载PDF
基于改进K-means算法的彩色超声图像分割 被引量:2
5
作者 郑晓霞 赵青杉 陈文杰 《忻州师范学院学报》 2017年第2期19-23,共5页
医学中的彩色超声图像受成像机理的影响,会出现对比度不高、边缘不清晰的现象。传统的图像分割方法存在处理结果准确率低、部分目标丢失等问题。文章针对图像分割中广泛应用的K-means算法依赖初始聚类中心和搜索易收敛于局部最优等不足... 医学中的彩色超声图像受成像机理的影响,会出现对比度不高、边缘不清晰的现象。传统的图像分割方法存在处理结果准确率低、部分目标丢失等问题。文章针对图像分割中广泛应用的K-means算法依赖初始聚类中心和搜索易收敛于局部最优等不足,在基本粒子群算法中加入惯性权重来提高收敛性能,并用该算法确定初始聚类中心,解决K-means的缺陷,然后将改进算法应用于L*a*b颜色空间的彩色超声心脏图像分割中。实验显示,改进方法改善了聚类结果的准确率和稳定性,且聚类时间也短,对色彩度低的超声图像可取得很好的分割效果。 展开更多
关键词 彩色超声图像 粒子群优化算法 惯性权重 K-meanS
下载PDF
基于向量加权平均算法优化最小二乘支持向量机的电价短期预测
6
作者 陈晓华 吴杰康 杨国荣 《黑龙江电力》 2025年第1期1-7,共7页
针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模... 针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模型;选取某地区2010年1月1日-15日的电力价格数据进行分析。仿真结果表明:与核极限学习机、长短期记忆神经网络、LSSVM预测模型相比,INFO-LSSVM预测模型的预测效果更好;利用果蝇优化算法优化LSSVM的惩罚因子和核函数参数构建FOA-LSSVM预测模型的预测效果不及INFO-LSSVM预测模型,并且INFO的收敛速度比FOA快。通过与对照预测模型对比表明,INFO-LSSVM预测模型具有更好的预测性能。 展开更多
关键词 向量加权平均算法 最小二乘支持向量机 电价预测 短期预测 INFO-LSSVM预测模型
下载PDF
图神经网络引导的演化算法求解约束多目标优化问题
7
作者 张毅芹 韩宗宸 +1 位作者 孙靖 赵春亮 《聊城大学学报(自然科学版)》 2025年第1期135-146,共12页
约束多目标优化问题由于其约束复杂性、可行域不规则性和可行解稀疏性,通常存在难以精准刻画约束关系,以及难以找到收敛性好且分布均匀的帕累托非支配解等问题。为此,本文提出了一种图神经网络引导的约束多目标演化算法,该算法包括了学... 约束多目标优化问题由于其约束复杂性、可行域不规则性和可行解稀疏性,通常存在难以精准刻画约束关系,以及难以找到收敛性好且分布均匀的帕累托非支配解等问题。为此,本文提出了一种图神经网络引导的约束多目标演化算法,该算法包括了学习模块与权向量自适应策略,其中学习模块通过训练图神经网络对解集进行快速评估,权向量自适应策略通过判别准则和更新机制增强种群多样性。实验结果表明,该算法在多个基准测试问题上显著优于现有的五个先进算法,在复杂约束多目标优化问题上表现出色。 展开更多
关键词 图神经网络 约束多目标优化问题 约束多目标演化算法 权向量更新
下载PDF
基于优化型K-means聚类算法的锅炉热效率研究 被引量:7
8
作者 查琳琳 牛培峰 +1 位作者 常玲芳 张先臣 《控制工程》 CSCD 北大核心 2021年第1期29-34,共6页
针对K-means聚类算法存在初始聚类中心影响聚类精度的问题,提出采用生物地理学算法优化K-means聚类中心,使其能提高聚类算法的准确率。在基准数据集中对本算法进行实验,其结果表明改进算法具有良好的性能。其次,采用改进的K-means聚类... 针对K-means聚类算法存在初始聚类中心影响聚类精度的问题,提出采用生物地理学算法优化K-means聚类中心,使其能提高聚类算法的准确率。在基准数据集中对本算法进行实验,其结果表明改进算法具有良好的性能。其次,采用改进的K-means聚类算法对不同工况下的锅炉燃烧工艺参数进行聚类,并挖掘出每一类中热效率最高时的燃烧工艺参数作为最佳工艺参数,使锅炉在最佳工艺参数下进行燃烧,达到提高热效率的目的。为了验证最佳工艺参数的有效性,采用贝叶斯最小二乘支持向量机辨识锅炉热效率模型,结果显示热效率明显提高,说明经过优化型K-means聚类算法挖掘的最佳工艺参数是有效的。 展开更多
关键词 锅炉热效率 数据挖掘 K-meanS聚类算法 生物地理学优化算法 贝叶斯最小二乘支持向量机
原文传递
基于K-MEANS算法的语境相关矢量量化 被引量:3
9
作者 许晓斌 丁丰 +1 位作者 林碧琴 袁保宗 《自动化学报》 EI CSCD 北大核心 2000年第3期369-372,共4页
研究用于连续语音识别的语境相关矢量量化技术 .提出采用 k- means( k-均值 )算法逐一地调整决策树叶子所包含的各个语境 ,实现对音素模型的混合密度的优化 .实验结果表明 ,采用 k- means算法的语境相关矢量量化得到的平均分布密度比简... 研究用于连续语音识别的语境相关矢量量化技术 .提出采用 k- means( k-均值 )算法逐一地调整决策树叶子所包含的各个语境 ,实现对音素模型的混合密度的优化 .实验结果表明 ,采用 k- means算法的语境相关矢量量化得到的平均分布密度比简单合并决策树叶子所得到的平均分布密度提高 4 %~ 1 0 %. 展开更多
关键词 连续语音识别 语境相关矢量量化 K-meanS算法
下载PDF
基于加权K-means聚类和遗传算法的变电站规划 被引量:8
10
作者 成乐祥 季丽 《江苏电机工程》 2016年第6期9-12,共4页
针对变电站规划问题,提出了基于加权K-means聚类的变电站供电范围划分方法,并在此基础上提出了基于加权K-means聚类和遗传算法的变电站规划算法。该算法运用遗传算法的全局搜索能力确定变电站的座数、主变台数和容量的最优组合,解决了... 针对变电站规划问题,提出了基于加权K-means聚类的变电站供电范围划分方法,并在此基础上提出了基于加权K-means聚类和遗传算法的变电站规划算法。该算法运用遗传算法的全局搜索能力确定变电站的座数、主变台数和容量的最优组合,解决了应用加权K-means聚类算法划分变电站供电范围时初始聚类数确定的问题。加权K-means聚类算法能够综合考虑变电站的负载率和供电半径的约束,并在迭代过程中自适应调节。算例结果表明所提算法能够较好地求解变电站优化规划问题。 展开更多
关键词 变电站规划 加权K-means聚类算法 遗传算法 变电站站址 供区优化
全文增补中
一种实现微博兴趣挖掘的粒子群优化k-means算法 被引量:2
11
作者 沈超 王逊 黄树成 《计算机与数字工程》 2020年第8期1819-1823,共5页
针对k-means在聚类微博用户感兴趣话题时存在的问题,结合粒子群算法,提出一种学习因子、时间因子随惯性权重调整的MPSO-kmeans算法。该算法通过引入随惯性权重调整的学习因子,增强了惯性权重与学习因子之间的相互作用,提高了算法的全局... 针对k-means在聚类微博用户感兴趣话题时存在的问题,结合粒子群算法,提出一种学习因子、时间因子随惯性权重调整的MPSO-kmeans算法。该算法通过引入随惯性权重调整的学习因子,增强了惯性权重与学习因子之间的相互作用,提高了算法的全局搜索能力和局部寻优能力。在此基础上,引入线性飞行因子以减少粒子的震荡,近一步提高局部精度搜索能力。实验表明,该算法在聚类微博数据时,具有更好的寻优能力和聚类效果。 展开更多
关键词 K-meanS算法 粒子群优化算法 学习因子 惯性权重
下载PDF
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
12
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 FUZZY support VECTOR machine FUZZY clustering SAMPLE WEIGHT GENETIC algorithm parameter optimization FAULT diagnosis
下载PDF
基于镜像修正FxLMS控制算法的船舶管路振动主动控制 被引量:1
13
作者 刘学广 谭鉴 +3 位作者 吴牧云 张二宝 闫明 刘济源 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期77-84,共8页
针对船舶管路减振和抗冲击的需求,本文根据镜像修正自适应滤波算法,设计出了一种管路振动主动控制策略,能够有效地控制管路在低频下的振动,并且在次级通道发生突变时,控制系统可再次快速收敛,进行稳定控制。本文先对镜像修正自适应滤波... 针对船舶管路减振和抗冲击的需求,本文根据镜像修正自适应滤波算法,设计出了一种管路振动主动控制策略,能够有效地控制管路在低频下的振动,并且在次级通道发生突变时,控制系统可再次快速收敛,进行稳定控制。本文先对镜像修正自适应滤波算法进行理论研究,分析算法的迭代及控制过程;再通过仿真分别验证算法在不同参考信号输入下的收敛性及稳定性;最后搭建实验台架,通过试验验证算法的实际控制效果。试验结果表明:该控制策略在管路振动主动控制中能够降低15.37%的振动强度,比自适应滤波算法控制策略的控制效果好8.85%。所以镜像修正自适应滤波算法能够及时有效地进行管路振动控制。 展开更多
关键词 镜像修正自适应滤波算法 在线辨识 自适应滤波算法 归一化算法 整体建模算法 镜像系统 权向量迭代 振动主动控制
下载PDF
基于特征判定系数的电力变压器振动信号故障诊断 被引量:1
14
作者 谢丽蓉 严侣 +1 位作者 吐松江·卡日 张馨月 《电力工程技术》 北大核心 2024年第3期217-225,共9页
变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposit... 变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和特征熵权法(entropy weight method,EWM)进行故障诊断的方法。通过相关系数与峭度加权(correlation coefficient and weighted kurtosis,CCWK)原则筛选CEEMDAN分量并重构信号,在实现剔除冗余分量的同时,提升变压器振动信号特征的表征能力;利用EWM构建特征判定系数实现单一数据诊断变压器故障类型;通过主成分分析法减小混合域特征尺度,采用鸡群优化算法优化支持向量机(support vector machine,SVM)模型进行故障诊断。对某变电站110 kV三相油浸式变压器进行分析,结果表明与概率神经网络和SVM等变压器故障诊断方法相比,文中方法能在提前定性故障类型的同时,进一步提高变压器故障诊断的准确率与效率。 展开更多
关键词 故障诊断 变压器振动信号 自适应噪声完备集合经验模态分解(CEEMDAN) 信噪比 熵权法(EWM) 支持向量机(SVM) 鸡群优化算法
下载PDF
基于改进INFO-CNN-QRGRU模型的农村分布式光伏发电短期概率预测
15
作者 王俊 邱爽 +3 位作者 鞠丹阳 谢易澎 张楠楠 王慧 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第4期490-502,共13页
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定... 随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。 展开更多
关键词 光伏出力 高斯混合模型聚类 门控循环单元 向量加权平均算法 分位数回归 概率预测
下载PDF
融合多特征信息与GWO-SVM的机械关键设备故障诊断
16
作者 宋玲玲 王琳 +1 位作者 钟丽 李晨曦 《机械设计与制造》 北大核心 2024年第11期116-121,共6页
为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的... 为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的机械关键设备故障诊断模型。首先,提取机械关键设备故障信号的时域特征、频域特征和多尺度加权排列熵特征,分别对比不同特征的机械关键设备故障诊断结果。其次,为提高SVM模型性能,运用GWO算法对SVM模型的惩罚参数P和核函数参数g进行优化选择,提出一种融合多特征信息与GWO-SVM的机械设备故障诊断模型。与GA-SVM、PSO-SVM和SVM相比,基于GWO-SVM的机械设备故障诊断模型的诊断精度最高。这里算法可以有效提高机械关键设备故障诊断正确率,为机械关键设备故障诊断提供了新的方法。 展开更多
关键词 时域特征 灰狼优化算法 支持向量机 频域特征 多尺度加权排列熵
下载PDF
面向高维多目标优化的双阶段双种群进化算法 被引量:2
17
作者 曹嘉乐 杨磊 +2 位作者 田井林 李华德 李康顺 《计算机工程与应用》 CSCD 北大核心 2024年第9期159-171,共13页
随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为... 随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为两个阶段,在第一阶段判断帕累托前沿的形状是否规则,而在第二阶段则根据帕累前沿的形状选择是否对权重向量进行调整,以保证种群在规则及不规则帕累托前沿上都能获得良好的多样性。为了对权重向量进行调整且不影响算法的收敛性,该算法使用了两个种群进行进化,一个主种群正常进化,另一个辅种群作为权重向量。为了在不规则的帕累托前沿上获得一组适应种群分布的权重向量,引入了自然界中能量平衡的概念收集了多样性良好的辅种群作为权重向量。将提出的算法与其他算法在3-10目标的测试问题上进行比较。实验结果表明,提出的算法在大多数测试问题上性能优于比较的算法。 展开更多
关键词 高维多目标优化 进化算法 双阶段 双种群 权重向量 能量平衡
下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:1
18
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊C均值聚类 平衡优化器算法 支持向量机
原文传递
一种自适应调整权重向量的多目标进化算法 被引量:1
19
作者 董奥哲 董红斌 《应用科技》 CAS 2024年第4期51-61,共11页
基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pare... 基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pareto frontier,PF)的问题时,容易陷入局部最优并难以获得可行解。本文提出一种改进的MOEA/D算法,包括3个优化策略:首先,使用拉丁超立方抽样方法代替随机方法初始化种群,得到分布均匀的初始种群,同时对权重向量关联解的策略进行优化;其次,提出一种稀疏度函数,用于计算种群中个体的稀疏度并维护外部种群;最后,提出了自适应调整权向量的方法,用于引导种群收敛到帕累托前沿,并且有效平衡种群的多样性和收敛性。将提出算法和4种对比算法在DTLZ和WFG系列问题以及多目标旅行商问题(multi-objective travel salesman problem,MOTSP)上进行对比实验,实验结果表明本文提出自适应调整权重向量的多目标进化(MOEA/D with cosine similarity adaptive weight adjustment,MOEA/D-CSAW)算法在处理具有复杂帕累托前沿和高维多目标的问题时,算法的综合性能要优于对比算法。 展开更多
关键词 多目标优化 多目标进化算法 自适应调整 权重向量 帕累托前沿 稀疏度函数 多样性 收敛性
下载PDF
RLDEAO优化的空气质量数据聚类分析
20
作者 田闯 黄鹤 +2 位作者 杨澜 王会峰 茹锋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第5期542-553,共12页
对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aqui... 对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aquila optimizer,AO)算法具有很强的探索能力,不易受初始点的影响且更易实现,但易陷入局部最优。基于自适应逐维小孔成像反向学习策略、停滞扰动结合莱维飞行策略以及生物进化策略等改进思想,对AO算法进行了改进,有效提高了搜索性能,避免了局部最优;在求取聚类中心点时,设计了一种加权最大最小距离积法(weighted maximum minimum distance product,WMMP),能反映各特征的重要性,对改进聚类结果作用良好;将RLDEAO与WMMP相结合优化K-means互补迭代,提高了搜索速率和搜索精度。通过在多个数据集上的聚类测试,发现RLDEAO-KMC算法的收敛精度和聚类效果较AO-KMC、FCM、KMC、KMC++算法更优。可知,RLDEAO-KMC算法可以更高效地对空气质量数据进行聚类分析,有针对性地做出预测和应对。 展开更多
关键词 K-meanS聚类算法 天鹰优化器(AO) 加权最大最小距离积法
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部