A separation phenomenon occurring during the drop weight tear test of commercial thick-walled API (American Petroleum Institute) X80 strip steel was investigated in this work. Microstructural analysis showed that th...A separation phenomenon occurring during the drop weight tear test of commercial thick-walled API (American Petroleum Institute) X80 strip steel was investigated in this work. Microstructural analysis showed that the band structure of bainite elongated along the rolling direction works as the initiation sites of separation. The propagation of separation can be promoted not only by the occurrence of the band structure of martensite/austenite constituent, prior austenite grain boundaries, and elongated bainite, but also by fine acicular ferrite and bainite. Wide separation formed in the former case, while the narrow one appeared in the latter case. acicular ferrite in thick-walled X80 pipeline steel in order Some methods were proposed to obtain fine and homogeneous to minimize the occurrence of separation.展开更多
The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that th...The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.展开更多
The weight loss of cement slurry is the main cause of early annular air channeling and accurate experimental evaluation of the law of loss change is the key to achieve compression stability and prevent this undesired ...The weight loss of cement slurry is the main cause of early annular air channeling and accurate experimental evaluation of the law of loss change is the key to achieve compression stability and prevent this undesired phenomenon.Typically,tests on the pressure loss of cement slurry are carried out for temperature smaller than 120°C,and this condition cannot simulate effectively the situation occurring in high temperature wells.For this reason,in this study a series of experimental tests have been conducted considering a larger range of temperatures,different retarders and fluid loss additives.The results show that with an increase in the temperature,the weight loss curve of cement slurry changes from a“two-stage”to a“three-stage”behavior,and the risk of channeling increases accordingly.On increasing the amount of retarder and fluid loss additive,the transition time of cement slurry displays a non-monotonic behavior(it decreases first and then increases).It is found that the optimized retarder and fluid loss additive dosage are 0.2%and 2.5%,respectively.展开更多
The relationship between the linear errors-in-variables model and the corresponding ordinary linear model in statistical inference is studied. It is shown that normality of the distribution of covariate is a necessary...The relationship between the linear errors-in-variables model and the corresponding ordinary linear model in statistical inference is studied. It is shown that normality of the distribution of covariate is a necessary and sufficient condition for the equivalence. Therefore, testing for lack-of-fit in linear errors-in-variables model can be converted into testing for it in the corresponding ordinary linear model under normality assumption. A test of score type is constructed and the limiting chi-squared distribution is derived under the null hypothesis. Furthermore, we discuss the power of the test and the choice of the weight function involved in the test statistic.展开更多
This work provides a comprehensive review of the development and applications of bridge rotation construction methods(BRMs) and related critical construction technologies in China. A brief history of BRMs and an outli...This work provides a comprehensive review of the development and applications of bridge rotation construction methods(BRMs) and related critical construction technologies in China. A brief history of BRMs and an outline of their categories,including the rotating structural system, are given first. Subsequently, a discussion on the recent practice of BRMs in China is carried out from three types of bridges:(1) continuous beam and rigid frame bridges;(2) arch bridges;(3) cable-stayed bridges.For each group, a survey of the vital bridge cases that have adopted BRMs in China in the past two decades is provided. Key parameters, including the structure weight of rotation, maximum cantilever span, and rotation duration, are also compared and discussed. Afterward, the principles and applications of the weighing test and the spherical hinge stability, which are both related to the safety of the horizontal rotation construction process, are analyzed in the paper. Additionally, the limitations of BRMs are presented and discussed, and the article concludes with a summary of the current use and future trend of BRMs. The information and experience of BRMs provided in this work can be referenced by engineers and researchers who are devoted to the construction of bridges.展开更多
Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers in...Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers infusion. The used nanofillers include multi-walled carbon nanotubes(MWCNTs), SiC and Al2O3 nanoparticles. The nanofillers with different weight percentages are ultrasonically dispersed in the epoxy resin. The sonication time and amplitude for MWCNTs are reduced compared to Al2O3 and SiC nanoparticles to avoid the damage of MWCNTs during sonication processes. The fabricated neat epoxy and twelve nanocomposite panels were characterized via standard tension and in-plane shear tests. The experimental results show that the nanocomposites materials with 0.5wt% MWCNTs, 1.5wt% SiC and 1.5wt% Al2O3 nanoparticles have the highest improvement in the tensile properties compared to the other nanofiller loading percentages.The improvements in the shear properties of these nanocomposite materials were respectively equal to 5.5%, 4.9%, and 6.3% for shear strengths, and 10.3%, 16.0%, and 8.1% for shear moduli. The optimum nanofiller loading percentages will be used in the following papers concerning their effect on the bonded joints/repairs of carbon fiber reinforced composites.展开更多
文摘A separation phenomenon occurring during the drop weight tear test of commercial thick-walled API (American Petroleum Institute) X80 strip steel was investigated in this work. Microstructural analysis showed that the band structure of bainite elongated along the rolling direction works as the initiation sites of separation. The propagation of separation can be promoted not only by the occurrence of the band structure of martensite/austenite constituent, prior austenite grain boundaries, and elongated bainite, but also by fine acicular ferrite and bainite. Wide separation formed in the former case, while the narrow one appeared in the latter case. acicular ferrite in thick-walled X80 pipeline steel in order Some methods were proposed to obtain fine and homogeneous to minimize the occurrence of separation.
基金supported by the PRFU national project under Grant Agreement No.B00L02UN280120180005
文摘The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.
基金The authors gratefully acknowledge the research project from“Research and test on optimization of calculation model for cementing engineering of high temperature and high pressure wells”(Grant No.CQCJ-2020-06).
文摘The weight loss of cement slurry is the main cause of early annular air channeling and accurate experimental evaluation of the law of loss change is the key to achieve compression stability and prevent this undesired phenomenon.Typically,tests on the pressure loss of cement slurry are carried out for temperature smaller than 120°C,and this condition cannot simulate effectively the situation occurring in high temperature wells.For this reason,in this study a series of experimental tests have been conducted considering a larger range of temperatures,different retarders and fluid loss additives.The results show that with an increase in the temperature,the weight loss curve of cement slurry changes from a“two-stage”to a“three-stage”behavior,and the risk of channeling increases accordingly.On increasing the amount of retarder and fluid loss additive,the transition time of cement slurry displays a non-monotonic behavior(it decreases first and then increases).It is found that the optimized retarder and fluid loss additive dosage are 0.2%and 2.5%,respectively.
文摘The relationship between the linear errors-in-variables model and the corresponding ordinary linear model in statistical inference is studied. It is shown that normality of the distribution of covariate is a necessary and sufficient condition for the equivalence. Therefore, testing for lack-of-fit in linear errors-in-variables model can be converted into testing for it in the corresponding ordinary linear model under normality assumption. A test of score type is constructed and the limiting chi-squared distribution is derived under the null hypothesis. Furthermore, we discuss the power of the test and the choice of the weight function involved in the test statistic.
基金the National Natural Science Foundation of China(Grant No.51808056)Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ5583)+1 种基金the Research Project of Hunan Provincial Department of Education(Grant No.19B012)the China Scholarship Council(Grant No.201808430232)。
文摘This work provides a comprehensive review of the development and applications of bridge rotation construction methods(BRMs) and related critical construction technologies in China. A brief history of BRMs and an outline of their categories,including the rotating structural system, are given first. Subsequently, a discussion on the recent practice of BRMs in China is carried out from three types of bridges:(1) continuous beam and rigid frame bridges;(2) arch bridges;(3) cable-stayed bridges.For each group, a survey of the vital bridge cases that have adopted BRMs in China in the past two decades is provided. Key parameters, including the structure weight of rotation, maximum cantilever span, and rotation duration, are also compared and discussed. Afterward, the principles and applications of the weighing test and the spherical hinge stability, which are both related to the safety of the horizontal rotation construction process, are analyzed in the paper. Additionally, the limitations of BRMs are presented and discussed, and the article concludes with a summary of the current use and future trend of BRMs. The information and experience of BRMs provided in this work can be referenced by engineers and researchers who are devoted to the construction of bridges.
基金funded by King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia under Grant DRP-5-3financial support of KACST
文摘Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers infusion. The used nanofillers include multi-walled carbon nanotubes(MWCNTs), SiC and Al2O3 nanoparticles. The nanofillers with different weight percentages are ultrasonically dispersed in the epoxy resin. The sonication time and amplitude for MWCNTs are reduced compared to Al2O3 and SiC nanoparticles to avoid the damage of MWCNTs during sonication processes. The fabricated neat epoxy and twelve nanocomposite panels were characterized via standard tension and in-plane shear tests. The experimental results show that the nanocomposites materials with 0.5wt% MWCNTs, 1.5wt% SiC and 1.5wt% Al2O3 nanoparticles have the highest improvement in the tensile properties compared to the other nanofiller loading percentages.The improvements in the shear properties of these nanocomposite materials were respectively equal to 5.5%, 4.9%, and 6.3% for shear strengths, and 10.3%, 16.0%, and 8.1% for shear moduli. The optimum nanofiller loading percentages will be used in the following papers concerning their effect on the bonded joints/repairs of carbon fiber reinforced composites.