期刊文献+
共找到48,938篇文章
< 1 2 250 >
每页显示 20 50 100
Winter wheat yield improvement by genetic gain across different provinces in China 被引量:1
1
作者 Wei Chen Jingjuan Zhang Xiping Deng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期468-483,共16页
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist... The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly. 展开更多
关键词 genetic gain winter wheat YIELD yield components
下载PDF
Effect of Ozone Treatment on Microbiological Properties of Stored Wheat
2
作者 Hussein Al-Sahho Hakan Kuleaşan 《Food and Nutrition Sciences》 CAS 2024年第2期140-150,共11页
In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified d... In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing. 展开更多
关键词 wheat Storage Ozone Application wheat Impurities Microbial Enumeration
下载PDF
The Advantages of Methane Production by Combined Fermentation of Lignite and Wheat Straw
3
作者 Jiayuan Gu 《Advances in Bioscience and Biotechnology》 CAS 2024年第1期1-14,共14页
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod... Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses. 展开更多
关键词 LIGNITE wheat Straw Mixed Fermentation Microbial Community Macrogenomics
下载PDF
Creating large EMS populations for functional genomics and breeding in wheat
4
作者 Wenqiang Wang Xizhen Guan +10 位作者 Yong Gan Guojun Liu Chunhao Zou Weikang Wang Jifa Zhang Huifei Zhang Qunqun Hao Fei Ni Jiajie Wu Lynn Epstein Daolin Fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期484-493,共10页
Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introduc... Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture. 展开更多
关键词 wheat GERMPLASM ethyl methane sulfonate genetics and breeding
下载PDF
Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis
5
作者 Yonghui Fan Boya Qin +8 位作者 Jinhao Yang Liangliang Ma Guoji Cui Wei He Yu Tang Wenjing Zhang Shangyu Ma Chuanxi Ma Zhenglai Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期536-550,共15页
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv... Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield. 展开更多
关键词 wheat asymmetric warming dry matter accumulation and translocation STARCH yield
下载PDF
The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number
6
作者 Yingxia Dou Hubing Zhao +4 位作者 Huimin Yang Tao Wang Guanfei Liu Zhaohui Wang Sukhdev Malhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期836-848,共13页
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components... Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK. 展开更多
关键词 dryland winter wheat plastic mulch spike number straw mulch
下载PDF
Genome-wide association study of seedling nitrogen-use efficiency-associated traits in common wheat(Triticum aestivum L.)
7
作者 Huawei Shi Weichong Wang +14 位作者 Lifeng Gao Jirong Wu Chengmei Hu Huishu Yan Yugang Shi Ning Li Youzhi Ma Yongbin Zhou Zhaoshi Xu Jun Chen Wensi Tang Kai Chen Daizhen Sun Yuxiang Wu Ming Chen 《The Crop Journal》 SCIE CSCD 2024年第1期222-231,共10页
Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused ... Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused by overfertilization.We subjected a panel of 389 wheat accessions to N and chlorate(a nitrate analog)treatments to identify quantitative trait loci(QTL)controlling NUE-associated traits at the wheat seedling stage.Genotyping the panel with a 660K single-nucleotide polymorphism(SNP)array,we identified 397 SNPs associated with N-sensitivity index and chlorate inhibition rate.These SNPs were merged into 49 QTL,of which eight were multi-environment stable QTL and 27 were located near previously reported QTL.A set of 135 candidate genes near the 49 QTL included TaBOX(F-box family protein)and TaERF(ethylene-responsive transcription factor).A Tabox mutant was more sensitive to low-N stress than the wild-type plant.We developed two functional markers for Hap 1,the favorable allele of TaBOX. 展开更多
关键词 wheat NUE Genome-wide association study Nitrogen sensitive index Chlorate inhibition rate
下载PDF
A novel AgNPs/MOF substrate-based SERS sensor for high-sensitive on-site detection of wheat gluten
8
作者 Linglin Fu Yanzhuo Du +3 位作者 Jinru Zhou Huan Li Minzi Wang Yanbo Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期681-687,共7页
Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food syst... Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food systems.Herein,we proposed a silver nanoparticles(AgNPs)/metal-organic framework(MOF)substrate-based surface-enhanced Raman scattering(SERS)sensor for the high-sensitive on-site detection of wheat gluten.The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate,providing an enhancement factor(EF)of 1.89×10^(5).Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS,this sensor represented high sensitivity performance and a wide detection range from 1×10^(-15)mol/L to 2×10^(-6)mol/L with a detection limit of 1.16×10^(-16)mol/L,which allowed monitoring the trace of wheat gluten in complex food system without matrix interference.This reliable sandwich SERS sensor may provide a promising platform for high-sensitive,accurate,and on-site detection of allergens in the field of food safety. 展开更多
关键词 wheat allergy GLUTEN Surface-enhanced Raman scattering Metal-organic framework DNA recognition
下载PDF
A Novel Deep Learning-Based Model for Classification of Wheat Gene Expression
9
作者 Amr Ismail WalidHamdy +5 位作者 Aya MAl-Zoghby Wael AAwad Ahmed Ismail Ebada Yunyoung Nam Byeong-Gwon Kang Mohamed Abouhawwash 《Computer Systems Science & Engineering》 2024年第2期273-285,共13页
Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.I... Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.In deep learning the most widely utilized architecture is Convolutional Neural Networks(CNN)are taught discriminatory traits in a supervised environment.In comparison to other classic neural networks,CNN makes use of a limited number of artificial neurons,therefore it is ideal for the recognition and processing of wheat gene sequences.Wheat is an essential crop of cereals for people around the world.Wheat Genotypes identification has an impact on the possible development of many countries in the agricultural sector.In quantitative genetics prediction of genetic values is a central issue.Wheat is an allohexaploid(AABBDD)with three distinct genomes.The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity of genetic knowledge and normal structure at breeding lines of wheat,Therefore,genome sequence approaches based on techniques of Artificial Intelligence(AI)are necessary.This paper focuses on using the Wheat genome sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation in their breeding program,as well as propose a novel model based on deep learning for offering a fundamental overview of genomic prediction theory and current constraints.In this paper,the hyperparameters of the network are optimized in the CNN to decrease the requirement for manual search and enhance network performance using a new proposed model built on an optimization algorithm and Convolutional Neural Networks(CNN). 展开更多
关键词 Gene expression convolutional neural network optimization algorithm genomic prediction wheat
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields
10
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Involvement of the ABA-and H_(2)O_(2)-Mediated Ascorbate-Glutathione Cycle in the Drought Stress Responses of Wheat Roots
11
作者 Mengyuan Li Zhongye Gao +2 位作者 Lina Jiang Leishan Chen Jianhui Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期329-342,共14页
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th... Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities. 展开更多
关键词 ABA H_(2)O_(2) AsA-GSH cycle drought stress wheat roots
下载PDF
Impact of Seawater Irrigation on seed germination and seedling growth of Ten Bread Wheat(Triticum aestivum L.)Genotypes
12
作者 Sami Mohammed Salih Ahmed Amrajaa Abdulrraziq 《Life Research》 2024年第2期32-37,共6页
Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laborato... Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%. 展开更多
关键词 acsad bread wheat Libyan coastal locations salinity tolerance seawater irrigation
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
13
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
14
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture Soil Organic Carbon Carbon Fractions Rice-wheat System Organic Amendments
下载PDF
Fusarium pseudograminearum and F.culmorum affect the root system architecture of bread wheat 被引量:1
15
作者 Ahmed Saad Jack Christopher +2 位作者 Anke Martin Stephen McDonald Cassandra Percy 《The Crop Journal》 SCIE CSCD 2023年第1期316-321,共6页
Yield losses of bread wheat due to crown rot can be more severe when drought conditions occur during the grain-filling period.Root architecture characteristics are important for soil exploration and belowground resour... Yield losses of bread wheat due to crown rot can be more severe when drought conditions occur during the grain-filling period.Root architecture characteristics are important for soil exploration and belowground resource acquisition and are essential for adaptation to water-limited environments.Traits such as root angle,length and density have been strongly associated with acquisition efficiency and contribute to yield stability of the crop.The impact of crown rot pathogens on wheat root architecture is poorly understood.We examined differences in root angle,length and number,as well as dry root weight of the crown rot-susceptible bread wheat cultivar,Livingston inoculated with one of two crown rot pathogens Fusarium culmorum or Fusarium pseudograminearum in a transparent-sided root observation chamber.Significant adverse impacts on plant health and growth were revealed by visual discolouration of the leaf sheaths;fresh and dry shoot weight;leaf area of the oldest and the youngest fully expanded leaf and leaf number.Values of most recorded root system measurements were reduced when inoculated with either F.culmorum or F.pseudograminearum.In contrast,root angle was increased in the presence of F.culmorum but was not significantly changed by F.pseudograminearum.The development of whiteheads and grain losses in bread wheat caused by crown rot have previously been associated with blockages of the vascular systems.The method employed here was able to identify differences in the pathogen impacts on roots,which were not detected using previous systems.This research indicates that in the presence of F.culmorum and F.pseudograminearum infection,not only reductions in the size and biomass of the shoot system but also changes in the length,biomass and architecture of the root system could play an important role in yield loss. 展开更多
关键词 Crown rot Root characteristics Livingston wheat
下载PDF
Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance 被引量:1
16
作者 LI Jiao-jiao ZHAO Li +7 位作者 Lü Bo-ya FU Yu ZHANG Shu-fa LIU Shu-hui YANG Qun-hui WU Jun LI Jia-chuang CHEN Xin-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1291-1307,共17页
Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German c... Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding. However, its weakened disease resistance highlights the need to identify new resources. In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.Cytological observations characterized the karyotype of D27 as 2n=42=21 Ⅱ. Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27. Experiments using fluorescence in situ hybridization(FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes. They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed. Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance. In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making. In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement. Additionally,it can be valuable for researching the rye 1RS chromosome’s genetic diversity. 展开更多
关键词 common wheat disease resistance DOUGH properties RYE TRANSLOCATION LINE
下载PDF
TaABI19 positively regulates grain development in wheat 被引量:1
17
作者 LIU Yun-chuan WANG Xiao-lu +5 位作者 HAO Chen-yang IRSHAD Ahsan LI Tian LIU Hong-xia HOU Jian ZHANG Xue-yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期41-51,共11页
Starch is the most important component in the endosperm, and its synthesis is regulated by multiple transcription factors(TFs) in cereals. However, whether the functions of these TFs are conserved among cereals remain... Starch is the most important component in the endosperm, and its synthesis is regulated by multiple transcription factors(TFs) in cereals. However, whether the functions of these TFs are conserved among cereals remains unclear. In this study,we cloned a B3 family TF in wheat, named TaABI19, based on its orthologous sequence in maize(Zea mays L.). Alignment of the DNA and protein sequences showed that ABI19 is conserved in maize and wheat(Triticum aestivum L.). We found that TaABI19 is highly expressed in young spikes and developing grains, and encodes a nucleus-localized transcriptional activator in wheat. The taabi19-b1 null mutants obtained by EMS exhibited a down-regulation of starch synthesis, shorter grain length and lower thousand-grain weight(TGW). Furthermore, we proved that TaABI19 could bind to the promoters of TaPBF homologous genes and enhance their expression. Haplotype association showed that TaABI19-B1 is significantly associated with TGW. We found that Hap2 and Hap3 were favored and had undergone positive selection in China’s wheat breeding programs. Less than 50% of the modern cultivars convey the favored haplotypes, indicating that TaABI19 still can be considered as a target locus for marker-assisted selection breeding to increase TGW in China. 展开更多
关键词 common wheat transcription factor HAPLOTYPE thousand grain weight
下载PDF
Introgression of chromosome 6PL terminal segment from Agropyron cristatum to increase both grain number and grain weight in wheat 被引量:1
18
作者 Yida Lin Shenghui Zhou +9 位作者 Xuezhong Liang Bing Han Junli Yang Baojin Guo Jinpeng Zhang Haiming Han Weihua Liu Xinming Yang Xiuquan Li Lihui Li 《The Crop Journal》 SCIE CSCD 2023年第3期878-886,共9页
Agropyron cristatum(2n=4x=28,PPPP),which harbours many high-yield and disease-resistance genes,is a promising donor for wheat improvement.Narrow genetic diversity and the trade-off between grain weight and grain numbe... Agropyron cristatum(2n=4x=28,PPPP),which harbours many high-yield and disease-resistance genes,is a promising donor for wheat improvement.Narrow genetic diversity and the trade-off between grain weight and grain number have become bottlenecks for increasing grain yield in wheat.In this study,a novel translocation line,WAT650l,was derived from the chromosome 6P addition line 4844–12,which can simultaneously increase both grain number per spike(GNS)and thousand-grain weight(TGW).Cytological analysis and molecular marker analysis revealed that WAT650l was a 5BL.5BS-6PL(bin 12–17)translocation line.Assessment of agronomic traits and analysis of the BC4F2 and BC5F2 populations suggested that the 6PL terminal chromosome segment in WAT650l resulted in increased grain number per spike(average increased by 14.07 grains),thousand-grain weight(average increased by 4.31 g),flag leaf length,plant height,spikelet number per spike and kernel number per spikelet during the two growing seasons of 2020–2021 and 2021–2022.Additionally,the increased GNS locus and high-TGW locus of WAT650l were mapped to the bins 16–17 and 12–13,respectively,on chromosome 6PL by genetic population analysis of three translocation lines.In summary,we provide a valuable germplasm resource for broadening the genetic base of wheat and overcoming the negative relationship between GNS and TGW in wheat breeding. 展开更多
关键词 Agropyron cristatum wheat Grain number per spike Thousand-grain weight Translocation lines
下载PDF
Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes 被引量:1
19
作者 CHU Jin-peng GUO Xin-hu +3 位作者 ZHENG Fei-na ZHANG Xiu DAI Xing-long HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2359-2369,共11页
Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at differen... Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.In this study,the effects of sowing date were investigated in a winter wheat cultivar,Shannong 30,which was sown in 2019 and 2020 on October 8(normal sowing)and October 22(late sowing)under field conditions.Delayed sowing increased the partitioning of ^(13)C-assimilates to spikes,particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.Consequently,the increase in grain number was the greatest for the apical sections,followed by the basal and central sections.No significant differences were observed between sowing dates in the superior grain number in the basal and central sections,while the number in apical sections was significantly different.The number of inferior grains in each section also increased substantially in response to delayed sowing.The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and ^(13)C-assimilate partitioning to grains at specific positions in the spikes.Increases in grain number m^(–2) resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections,followed by the central and apical sections.No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.In conclusion,a 2-week delay in sowing improved grain yield through increased grain number per spike,which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.However,grain protein concentrations declined in each section because of the increased grain number and reduced N uptake. 展开更多
关键词 wheat delay in sowing grain number grain weight grain protein concentration
下载PDF
Effect of thermal processing and fermentation with Chinese traditional starters on characteristics and allergenicity of wheat matrix 被引量:1
20
作者 Huan Rao Xi Li Wentong Xue 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期789-794,共6页
Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,an... Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,and hence affect its allergenic properties.However,few reports have focused on the influence of Chinese traditional starter fermentation on wheat allergy.In this study,5 starters from different regions of China were used for fermentation,and protein characteristics were monitored by sodium dodecyl sulfate polyacrylamide gel electropheresis,and immunoreactivity analyzed by immunoassay with allergenic serum was obtained from New Zealand white rabbits.The allergenicity of steamed and baked matrices was also evaluated.The results showed that the allergenicity of wheat dough was basically increased at the beginning and then decreased during fermentation,but specific trends depend on different starters.With the progress of fermentation,especially as pH value decreased to 3.0-4.0,the allergenicity decreased significantly.Baking and steaming can reduce the allergenicity of wheat matrix,but fermentation is not a key factor affecting the allergenic activity of proteins.Our results can provide a theoretical basis for controlling wheat allergenicity in food proces sing or producing hypoallergenic food. 展开更多
关键词 Chinese traditional starter ermentation characteristics Thermal processing ALLERGENICITY wheat matrix
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部