期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Molecular cytogenetic analyses of two new wheat-rye 6RL translocation lines with resistance to wheat powdery mildew 被引量:1
1
作者 Shanying Zhu Haonan Du +9 位作者 Fuyu Su Jin Wang Qingfeng Meng Tianlei Liu Rui Guo Zhaozhao Chen Huanhuan Li Wenxuan Liu Pengtao Ma Huagang He 《The Crop Journal》 SCIE CSCD 2023年第2期584-592,共9页
Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye ... Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye derivatives,designated JS016 and JS110,were produced by crossing common wheat cultivar Yangmai 23 with Pakistani rye accession W2A.Using sequential genomic in situ hybridization(GISH)and multicolor fluorescence in situ hybridization(mc-FISH),JS016 and JS110 were identified as a T6BS.6RL translocation line and a T6BS.6BL6RL translocation line,respectively.Ten newly 6RL chromosome arm-specific markers were developed and used to confirm the 6RL translocation.The wheat 55K single-nucleotide polymorphism(SNP)array further verified the molecular cytogenetic identification results above and clarified their breakpoints at 430.9 and 523.0 Mb of chromosome 6B in JS016 and JS110,respectively.Resistance spectrum and allelism test demonstrated that JS016 and JS110 possessed novel powdery mildew resistance gene(s)that was derived from the 6RL translocation but differed from Pm20.Moreover,JS016 and JS110 had better agronomic traits than the previously reported 6RL translocation line carrying Pm20.To efficiently transfer and detect the 6RL translocation from JS016 and JS110,one 6RL-specific Kompetitive allele specific PCR(KASP)marker was developed and validated in high throughput marker-assisted selection(MAS). 展开更多
关键词 Secale cereale Translocation line wheat powdery mildew GISH/FISH KASP marker
下载PDF
Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data 被引量:2
2
作者 Li Song Luyuan Wang +5 位作者 Zheqing Yang Li He Ziheng Feng Jianzhao Duan Wei Feng Tiancai Guo 《The Crop Journal》 SCIE CSCD 2022年第5期1312-1322,共11页
Powdery mildew is a disease that threatens wheat production and causes severe economic losses worldwide. Its timely diagnosis is imperative for preventing and controlling its spread. In this study, the multiangle cano... Powdery mildew is a disease that threatens wheat production and causes severe economic losses worldwide. Its timely diagnosis is imperative for preventing and controlling its spread. In this study, the multiangle canopy spectra and disease severity of wheat were investigated at several developmental stages and degrees of disease severity. Four wavelength variable-selected algorithms: successive projection(SPA), competitive adaptive reweighted sampling(CARS), feature selection learning(Relief-F), and genetic algorithm(GA), were used to identify bands sensitive to powdery mildew. The wavelength variables selected were used as input variables for partial least squares(PLS), extreme learning machine(ELM), random forest(RF), and support vector machine(SVM) algorithms, to construct a suitable prediction model for powdery mildew. Spectral reflectance and conventional vegetation indices(VIs) displayed angle effects under several disease severity indices(DIs). The CARS method selected relatively few wavelength variables and showed a relatively homogeneous distribution across the 13 viewing zenith angles.Overall accuracies of the four modeling algorithms were ranked as follows: ELM(0.70–0.82) > PLS(0.63–0.79) > SVM(0.49–0.69) > RF(0.43–0.69). Combinations of features and algorithms generated varied accuracies, with coefficients of determination(R^(2)) single-peaked at different observation angles. The constructed CARS-ELM model extracted a predictable bivariate relationship between the multi-angle canopy spectrum and disease severity, yielding an R^(2)> 0.8 at each measured angle. Especially for larger angles,monitoring accuracies were increased relative to the optimal VI model(40% at-60°, 33% at +60°), indicating that the CARS-ELM model is suitable for extreme angles of-60° and +60°. The results are proposed to provide a technical basis for rapid and large-scale monitoring of wheat powdery mildew. 展开更多
关键词 Characteristic wavelength selection Estimation model Machine learning Multi-angular remote sensing wheat powdery mildew
下载PDF
Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew 被引量:16
3
作者 Weicai Qin Xinyu Xue +2 位作者 Shaoming Zhang Wei Gu Baokun Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第2期27-32,共6页
Small unmanned aerial vehicle(UAV),a timely and effective pesticide sprayer,can be used to spray pesticide in a high efficiency without harming the crop,and is especially suitable for spraying for small farms and hill... Small unmanned aerial vehicle(UAV),a timely and effective pesticide sprayer,can be used to spray pesticide in a high efficiency without harming the crop,and is especially suitable for spraying for small farms and hills in Asian countries.In recent years,it has been chosen as a key and new technique for pesticide application.This paper studied the impact of UAV(UAV N-3)spraying parameters(different working height and different spraying concentrations)on the deposition of droplets on the wheat canopy and the prevention of powdery mildew.Water sensitive paper was used as the sampler to collect the pesticide droplets and image processing software Deposit Scan was used to compute the coverage rate of droplets on the wheat top layer to acquire the proportional distribution of droplets on the wheat lower layer.The experimental results showed the impact of spraying height on the distribution of droplets on the wheat upper layer was quite significant,when the spraying height was 5.0 m and the spraying speed was 4 m/s,the coverage rate of droplets on the wheat lower layer was the largest,as it was 45.6%of that on the upper layer,the droplets distribution was the most uniform,and the coefficient of variation was 33.13%.450 g/hm^(2)(dosage registered)of triadimefon SC(44%)was sprayed by the UAV,the control efficiency reached 55.1%after applying which was better than 20%and 40%of dosage decreased for each hectare,and the applying effect(35.6%)of 20%dosage decreased for each hectare had no significant difference from the applying effect(34.6%)applied by a knapsack-type electric sprayer.At 10 d after applying,the prevention effect realized by UAV was lower than that realized by a knapsack-type electric sprayer,and it may be correlated to the meteorological condition and water amount in the pesticide sprayed.Thus,when UAV spraying was chosen to prevent wheat powdery mildew under a serious disease situation,an auxiliary agent for spraying could be added to prolong the retention of pesticide on the plant surface to extend the pesticide effect.This study can provide a reference for the optimized design,performance upgrade and reasonable application of small UAV sprayers. 展开更多
关键词 unmanned aerial vehicle(UAV) spraying pesticide parameters optimization fungicide deposition wheat powdery mildew control effect
原文传递
Genetic dissection of the powdery mildew resistance in wheat breeding line LS5082 using BSR-Seq 被引量:1
4
作者 Liru Wu Tong Zhu +9 位作者 Huagang He Xinyou Cao Haosheng Li Hongxing Xu Mengshu Jia Lipei Zhang Jiancheng Song Ghader Mirzaghaderi Cheng Liu Pengtao Ma 《The Crop Journal》 SCIE CSCD 2022年第4期1120-1130,共11页
Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese... Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese wheat breeding line with resistance to powdery mildew.Genetic analysis,using the populations of LS5082 and three susceptible parents(Shannong 29,Shimai 22 and Huixianhong),indicated that a single dominant gene,tentatively designated PmLS5082,conferred seedling resistance to different Blumeria graminis f.sp.tritici(Bgt)isolates.Bulked segregant RNA-Seq was carried out to map PmLS5082 and to profile differentially expressed genes associated with PmLS5082.PmLS5082 was mapped to a 0.7 cM genetic interval on chromosome arm 2BL,which was aligned to a 0.7 Mb physical interval of 710.3–711.0 Mb.PmLS5082 differs from the known powdery mildew(Pm)resistance genes on chromosome arm 2BL based on their origin,chromosome positions and/or resistance spectrum,suggesting PmLS5082 is most likely a new Pm gene/allele.Through clusters of orthologous groups and kyoto encyclopedia of genes and genomes analyses,differentially expressed genes(DEGs)associated with PmLS5082 were profiled.Six DEGs in the PmLS5082 interval were confirmed to be associated with PmLS5082 via qPCR analysis,using an additional set of wheat samples and time-course analysis postinoculation with Bgt isolate E09.Ten closely linked markers,including two kompetitive allele-specific PCR markers,were confirmed to be suitable for marker-assisted selection of PmLS5082 in different genetic backgrounds,thus can be used to detect PmLS5082 and pyramid it with other genes in breeding programs. 展开更多
关键词 wheat powdery mildew Bulked segregant RNA-seq(BSR-Seq) PmLS5082 Differentially expressed gene(DEG) Marker-assisted selection(MAS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部