期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive 被引量:9
1
作者 Yunguang Ye Yayun Qi +3 位作者 Dachuan Shi Yu Sun Yichang Zhou Markus Hecht 《Railway Engineering Science》 2020年第2期160-183,共24页
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ... The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications. 展开更多
关键词 wheel profile optimization Wear reduction Rotary-scaling fine-tuning Particle swarm optimization Kriging surrogate model
下载PDF
Railway wheel profile fine-tuning system for profile recommendation 被引量:3
2
作者 Yunguang Ye Jonas Vuitton +1 位作者 Yu Sun Markus Hecht 《Railway Engineering Science》 2021年第1期74-93,共20页
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one... This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively. 展开更多
关键词 wheel profile fine-tuning system Optimization RECOMMENDATION WEAR Contact concentration index Multi-body dynamics simulation(MBS) Railway wheel
下载PDF
Wheel Profile Optimization of Speed-up Freight Train Based on Multi-population Genetic Algorithm 被引量:1
3
作者 Dabin CUI Pengcheng LEI +1 位作者 Xing ZHANG Jingkang PENG 《Mechanical Engineering Science》 2021年第1期28-38,共11页
The geometric shape of the wheel tread is mathematically expressed,and geometric parameters affecting the shape of the wheel were extracted as design variables.The vehicle dynamics simulation model was established bas... The geometric shape of the wheel tread is mathematically expressed,and geometric parameters affecting the shape of the wheel were extracted as design variables.The vehicle dynamics simulation model was established based on the vehicle suspension parameters and track conditions of the actual operation,and the comprehensive dynamic parameters of the vehicle were taken as the design objectives.The matching performance of the wheel equivalent conicity with the vehicle and track parameters was discussed,and the best equivalent conicity was determined as the constraint condition of the optimization problem;a numerical calculation program is written to solve the optimization model based on a multi-population genetic algorithm.The results show that the algorithm has a fast calculation speed and good convergence.Compared with the LM profile,the two optimized profiles effectively reduce the wheelset acceleration and improve the lateral stability of the bogie and vehicle stability during straight running.Due to the optimized profile increases the equivalent conicity under larger lateral displacement of the wheelset,the lateral wheel-rail force,derailment coefficient,wheel load reduction rate,and wear index are reduced when the train passes through the curve line.This paper provides a feasible way to ensure the speed-up operation of a freight train. 展开更多
关键词 Speed-up freight trains wheel profile optimization Dynamic performance Equivalent conicity
下载PDF
Wheel-rail Profiles Matching Design Considering Railway Track Parameters 被引量:6
4
作者 CUI Dabin LI Li +1 位作者 JIN Xuesong LI Ling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期410-417,共8页
The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the ra... The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the railway vehicle/track, and the wheel/rail rolling contact status. However, recent studies in this respect are mainly explored in reverse methods, where track parameters are predetermined and invariable during the optimizing process. This paper attempts to propose a wheel-rail profiles matching design method considering multi-parameter, through optimizing wheel/rail profile under different rail cants and track gauges, based on the existed optimization technology for the normal gap of wheel/rail. The method presented in this paper can also, compared with the prior reverse methods, be called "forward solution method" in which the riding comfort, wheel unloading rate and wheel/rail contact stress of the speed-up railway passenger car are calculated by means of a vehicle-track coupling dynamic model, with the range of the rail cant varying from 1/20 to 1/40 and the rail gauge from 1 433 mm to 1 441 mm. These results show that the distribution status of the pairs of contact points can be obviously improved and the contact stress can be reduced significantly; a great influence is exposed by the rail cant and track gauge on the dynamic behavior of the high speed passenger car, and an optimal vehicle dynamics behavior are obtained with the optimized wheel/rail profile when the rail cant is 1/30 and the track gauge is 1 435 mm. This research can provide important references for the investigation of the wheel-rail profiles matching design method considering multi-parameter. 展开更多
关键词 wheel profile OPTIMIZATION dynamic behavior rail cant track gauge
下载PDF
Simulation of wheel and rail profile wear:a review of numerical models 被引量:3
5
作者 N.Bosso M.Magelli N.Zampieri 《Railway Engineering Science》 2022年第4期403-436,共34页
The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys th... The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys the main numerical models in the literature for the evaluation of the uniform wear of wheel and rail profiles.The standard structure of these tools includes a multibody simulation of the wheel-track coupled dynamics and a wear module implementing an experimental wear law.Therefore,the models are classified according to the strategy adopted for the worn profile update,ranging from models performing a single computation to models based on an online communication between the dynamic and wear modules.Nevertheless,the most common strategy nowadays relies on an iteration of dynamic simulations in which the profiles are left unchanged,with co-simulation techniques often adopted to increase the computational performances.Work is still needed to improve the accuracy of the current models.New experimental campaigns should be carried out to obtain refined wear coefficients and models,while strategies for the evaluation of both longitudinal and transversal wear,also considering the effects of tread braking,should be implemented to obtain accurate damage models. 展开更多
关键词 WEAR wheel and rail profiles wheel-rail contact Railway vehicle dynamics Multibody simulation CO-SIMULATION
下载PDF
Anode Simulation and Cathode Design for Electrolytic Dressing of Diamond Profile Wheel
6
作者 邹峰 于爱兵 谭业发 《Transactions of Tianjin University》 EI CAS 2005年第3期172-175,共4页
The design methods of anode and cathode are proposed for precision profile grinding. Based on the electrolytic machining theory, electrolytic equilibrium condition and Faraday′s law of electrolysis are applied to est... The design methods of anode and cathode are proposed for precision profile grinding. Based on the electrolytic machining theory, electrolytic equilibrium condition and Faraday′s law of electrolysis are applied to establishing the mathematical model of profile diamond dressing process- es. A finite element method (FEM) program is developed to solve the inverse boundary problem of Laplace′s equation. Desired anode contour or cathode shape is determined by computing the distribution of electric potential layer by layer. Electrolytic machining experiment is carried out to verify the simulated anode shape. The research result shows that shape deviation between designed cathode and profile wheel increases with the value of angle between feed rate and the normal to anode surface. The shape of simulated anode is consistent with the contour of metal-bonded diamond profile wheel for a given cathode. Based on the anode contour, cathode shape can also be designed accurately. 展开更多
关键词 profile wheel DRESSING ELECTROLYSIS FEM DIAMOND
下载PDF
Parametric analysis of wheel wear in high-speed vehicles
7
作者 Na Wu Jing Zeng 《Journal of Modern Transportation》 2014年第2期76-83,共8页
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac... In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation. 展开更多
关键词 Parametric analysis wheel profile wear Flexible wheelset High-speed railway Vehicle dynamicmodel Finite element method
下载PDF
Computer Aided Design of Grinding Wheel for Drill Flute Production
8
作者 Janko Jovanovic Obrad Spaic +1 位作者 Radoslav Tomovic Rade Ivankovic 《Journal of Mechanics Engineering and Automation》 2014年第9期709-715,共7页
Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills us... Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design. 展开更多
关键词 Grinding wheel profile drill flute profile twist drill CAD.
下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:13
9
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
下载PDF
Implementations of newly developed wheel and rail profile design methods 被引量:1
10
作者 Gang Shen Xiaobo Zhong 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第3期221-227,共7页
The developments of a series of wheel or CADF contact functions are briefly described. profile computer aided methods based on the RRDF Since 2001 the implementations of these methods are carded out according to diffe... The developments of a series of wheel or CADF contact functions are briefly described. profile computer aided methods based on the RRDF Since 2001 the implementations of these methods are carded out according to different requirements for tramway vehicles, metro vehicles, and main line EMU vehicles etc. It is found that the main advantage of these new methods in wheel profile design is obtaining the proper wheel profiles to efficiently reduce the wears of wheel and rail and to improve the performances of both stability and curving performances. Moreover, post process of transfering a profile with discrete points to a profile with arc and line combinations is studied with a high precision. 展开更多
关键词 wheel profile design method RRDF CADF
原文传递
Investigation on induction brazing of profiled cBN wheel for grinding of Ti-6Al-4V 被引量:3
11
作者 Qilin LI Kai DING +3 位作者 Weining LEI Jiajia CHEN Qingshan HE Zhenzhen CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期132-139,共8页
Profiled monolayer cBN wheel was induction brazed for grinding of titanium dovetail slot in this study.Aimed at acquiring a uniform temperature distribution along the profiled surface and reducing the thermal deformat... Profiled monolayer cBN wheel was induction brazed for grinding of titanium dovetail slot in this study.Aimed at acquiring a uniform temperature distribution along the profiled surface and reducing the thermal deformation of the brazed wheel,a finite element model was established to investigate the temperature uniformity during induction brazing.A suitable induction coil and the related working parameters were designed and chosen based on the simulation results.Ag-Cu-Ti alloy and cBN grains were applied in the induction brazing experiment.The results showed geometric deformation of the brazed wheel was no more than 0.01 mm and chemical reaction layer were found on the brazed joint interface.Further validation tests were carried out by grinding of Ti-6 Al-4 V alloy.Compared to the electroplated wheel,the brazed wheel showed better performance such as low specific grinding energy and good ground quality in grinding of Ti-6 Al-4 V alloy.Abrasion wear was found to be the main failure mode for the induction brazed wheel,while adhesion and grains pull-out were the main failure mode for the electroplated wheel. 展开更多
关键词 Grinding performance Induction brazing profiled cBN wheel Specific grinding energy Temperature uniformity
原文传递
Development and validation of a model for predicting wheel wear in high-speed trains 被引量:8
12
作者 Gong-quan TAO Xing DU +3 位作者 He-ji ZHANG Ze-feng WEN Xue-song JIN Da-bin CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第8期603-616,共14页
In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commerci... In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement. 展开更多
关键词 High-speed train wheel profile wheel/Rail contact wheel wear prediction
原文传递
Evaluation of pavement skid resistance using high speed texture measurement 被引量:6
13
作者 Jay N.Meegoda Shengyan Gao 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第6期382-390,共9页
Skid resistance is an important parameter for highway designs, construction, management, maintenance and safety. The purpose of this manuscript is to propose the correlation between skid resistance, which is measured ... Skid resistance is an important parameter for highway designs, construction, management, maintenance and safety. The purpose of this manuscript is to propose the correlation between skid resistance, which is measured as skid resistance trailer, and mean profile depth (MPD) or the macro surface texture, which is measured by vehicle mounted laser, so that highway agencies can predict the skid resistance of pavement without the use of expensive and time consuming skid resistance trailer, which also causes disruption of traffic in use. In this research skid numbers and MPD from 5 new asphalt pavements and 4 old asphalt pavements were collected using a locked wheel skid trailer and a vehicle mounted laser. Using the data collected, a correlation between the skid number (SN40R) collected by locked wheel skid tester and the texture data or MPD collected by a vehicle mounted laser operating at highway speeds was developed. The proposed correlation for new pavements was positive for MPD values less than 0.75 mm to reach a peak SN40R value, then there was a negative correlation as the MPD increases until the MPD value was equal to 1.1 mm and beyond the MPD value of 1.1 mm to the maximum value of 1.4 mm, SN40R value remained almost constant. There were significant data scatter for the MPD value of 0.8 mm. To explain these results, water film thickness during the friction test was calculated and the critical MPD was defined. The effect of sealed water pool on the SN40R was discussed. The test result showed a similar trend for older asphalt pavements, but with lower SN40R values due to the polishing of pavement micro-texture by traffic. Hence, a reduction factor was proposed for older pavements based on cumulative traffic volume for the above correlation to predict the skid resistance of older pavements. 展开更多
关键词 Skid resistance High speed laser Pavement texture Cumulative traffic volume Locked wheel skid trailer Mean profile depth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部