The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian componen...The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.展开更多
The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified...The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.展开更多
When the swath of Synthetic Aperture Sonar(SAS) is considerably wide, the spacevariant effect of motion errors becomes remarkable. This space-variant effect makes Displace Phase Center Algorithm(DPCA) invalid. To ...When the swath of Synthetic Aperture Sonar(SAS) is considerably wide, the spacevariant effect of motion errors becomes remarkable. This space-variant effect makes Displace Phase Center Algorithm(DPCA) invalid. To solve the problem, a motion compensation method for wide-swath SAS is proposed. This method uses mixed modulated Lagrange explicit time delay estimation(MMLETDE) to estimate the time delay between two successive pings of the raw echo data, and then motion errors are fitted by linear regression. After that, the raw echo data can be precisely compensated point by point with the estimations of motion errors.Simulation results show that the proposed method can obtain better motion estimation results than DPCA. The resolution measured on the reconstructed image processed by the proposed method is very close to the theoretical resolution. The lake trail results of high frequency and low frequency SAS data show that the quality of the images of the terrain area and small targets is significantly improved.展开更多
Multichannel high-resolution and wide-swath(HRWS)imaging is an advanced digital beamforming technique for future synthetic aperture radar(SAR)systems.However,radio frequency interference(RFI)is a critical concern for ...Multichannel high-resolution and wide-swath(HRWS)imaging is an advanced digital beamforming technique for future synthetic aperture radar(SAR)systems.However,radio frequency interference(RFI)is a critical concern for HRWS SAR missions,which distorts measure-ments and produces image artifacts.In this paper,the spatial cross-correlation coefficients of multichannel HRWS SAR signals are investigated for RFI detection.It is found when the two channels are correlated,RFI-polluted areas present lower coherence values than non-polluted areas in the same scenarios,which makes previous methods fail.Further,this paper studies the case of two fully decorrelated channels to maximize the coherence difference among RFI and target echoes,and RFI detection is realized by exploiting the anomaly value of coherence.Experimental results of real air-borne multichannel SAR data demonstrate that the RFI can be detected successfully.展开更多
为了提高机械除草的作业效率、降低地头频繁调头引起的伤苗率,该文研制了3GY-1920型宽幅水田中耕除草机。该机由12 k W水田拖拉机提供动力,工作幅宽为5.7 m,一次作业可覆盖6行插秧机3个行程的作业宽度,并配备了4个双作用液压缸,控制整...为了提高机械除草的作业效率、降低地头频繁调头引起的伤苗率,该文研制了3GY-1920型宽幅水田中耕除草机。该机由12 k W水田拖拉机提供动力,工作幅宽为5.7 m,一次作业可覆盖6行插秧机3个行程的作业宽度,并配备了4个双作用液压缸,控制整个机架的展开闭合与除草轮位置的横向调节。该文结合水田土壤特性和现有除草部件的特点,通过对除草轮的运动学与显式动力学仿真分析,设计并优化了螺旋刀齿式样除草轮,该除草轮通过与土壤及杂草的剪切、翻耕作用实现中耕除草作业。田间除草试验结果表明:在机具不同前进速度(0.3、0.6、0.9 m/s)和除草轮入土深度(3、6、9 cm)条件下,该机平均除草率为82%,伤苗率为4.8%;根据机具作业速度和幅宽可知该机作业效率为0.6~1.8 hm2/h;整机工作性能和作业效率满足水稻田机械中耕除草作业的技术要求。机械除草与化学除草产量对比试验结果表明:在试验区域内,机械除草产量高于化学除草,该研究可为中耕除草对水稻田产量的影响提供参考。展开更多
基金support from the National Natural Science Foundation of China(No.42274006,42192535,42242015).
文摘The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.
基金the Shandong Provincial Natural Science Foundation(No.ZR2020MD097)the National Key Research and Development Program of China(No.2016YFC1401004)the National Natural Science Foundation of China(No.62031005)。
文摘The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.
基金supported by the National Natural Science Foundation of China(11204343)the National High Technology Research and Development Program of China(863 Program)(2013AA092701)
文摘When the swath of Synthetic Aperture Sonar(SAS) is considerably wide, the spacevariant effect of motion errors becomes remarkable. This space-variant effect makes Displace Phase Center Algorithm(DPCA) invalid. To solve the problem, a motion compensation method for wide-swath SAS is proposed. This method uses mixed modulated Lagrange explicit time delay estimation(MMLETDE) to estimate the time delay between two successive pings of the raw echo data, and then motion errors are fitted by linear regression. After that, the raw echo data can be precisely compensated point by point with the estimations of motion errors.Simulation results show that the proposed method can obtain better motion estimation results than DPCA. The resolution measured on the reconstructed image processed by the proposed method is very close to the theoretical resolution. The lake trail results of high frequency and low frequency SAS data show that the quality of the images of the terrain area and small targets is significantly improved.
基金supported by the National Natural Foundation of China(Nos.41001282,40871205,and 62271408)partly by Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2021-044)。
文摘Multichannel high-resolution and wide-swath(HRWS)imaging is an advanced digital beamforming technique for future synthetic aperture radar(SAR)systems.However,radio frequency interference(RFI)is a critical concern for HRWS SAR missions,which distorts measure-ments and produces image artifacts.In this paper,the spatial cross-correlation coefficients of multichannel HRWS SAR signals are investigated for RFI detection.It is found when the two channels are correlated,RFI-polluted areas present lower coherence values than non-polluted areas in the same scenarios,which makes previous methods fail.Further,this paper studies the case of two fully decorrelated channels to maximize the coherence difference among RFI and target echoes,and RFI detection is realized by exploiting the anomaly value of coherence.Experimental results of real air-borne multichannel SAR data demonstrate that the RFI can be detected successfully.