This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis.The mean wind s...This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis.The mean wind speed observation data and linear fitting method were used.The findings suggested that level-I regionalization includes six zones according to wind speed trend value in different regions,viz.Northeast ChinaeNorth China substantial declining zone,EasteCentral China declining zone,Southeast China slightly declining zone,Southwest China very slightly declining zone,Northwest China declining zone,and QinghaieTibetan Plateau slightly declining zone.Level-II regionalization divides China into twelve regions based on trend of wind speed variability and the level-I regionalization results.展开更多
Superhalo electrons appear to be continuously present in the interplane- tary medium, even during very quiet times, with a power-law spectrum at energies above ~2 keV. Here we numerically investigate the generation o...Superhalo electrons appear to be continuously present in the interplane- tary medium, even during very quiet times, with a power-law spectrum at energies above ~2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using magnetohydrody- namics and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the mag- netic reconnection region, can accelerate electrons from an initial thermal energy of T ~105 K up to hundreds of keV. After acceleration, some of the accelerated elec- trons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of upward-traveling accelerated electrons versus energy dis- plays a power-law distribution at ~ 2-100 keV, f(E)~ E^-δ, with a 6 of ~1.5 - 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter a (uniform resistivity η) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons.展开更多
The exploitation status of wind energy resources was analyzed, and the distribution of wind energy resources and regional meteorological stations were introduced, and then the assessment method of wind energy resource...The exploitation status of wind energy resources was analyzed, and the distribution of wind energy resources and regional meteorological stations were introduced, and then the assessment method of wind energy resources by using data from regional meteorological station was studied taking Huangjin Regional Meteorological Station in Xinning County in Hunan Province for example, besides, corresponding software was compiled. By means of SQL database and program, the method was used simply and easily and had positive meaning for the development of wind energy resources and excavation of wind farm in inland region.展开更多
This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross regi...This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross region where soil erosion is most serious on rainfall and runoff as well as erosion and sediment.Based on the Landsat TM image data and measured data of runoff-sediment in that watershed,the paper analyzed the characteristics of watershed landscape pattern change and runoff-sediment and explored the relationship between landscape index and runoff-sediment yield by means of GIS and Fragstats.The results were included as follows.(1)Grassland was the dominant landscape.In terms of the number of patches and area change rate,from 1985 to 2010,cultivated land,forest land and construction land were most stable,followed by unused land.Unused land,grassland and cultivated land experienced the most dramatic conversion and maximally affected by human activities.(2)The inter-annual difference between annual runoff and annual sediment load was significant.Compared with the annual sediment load,the trend of decreasing runoff was more obvious.The correlation coefficient of runoff-sediment was 0.67,representing a significant correlation.(3)There was a significant correlation between the landscape index and runoff-sediment.The runoff was negatively correlated with the largest patch index,patch cohesion index,aggregation index and contagion index,but positively correlated with landscape morphology index and landscape division index.And the sediment was negatively correlated with the contagion index,aggregation index and plaque cohesion index,but positively correlated with other landscape indexes.The results indicate that with the increase of the largest patch index,patch cohesion index and aggregation index,the rainfall infiltration capacity increase obviously and the soil erosion reduce significantly.Therefore,increasing the largest patch index,patch cohesion and aggregation index of the watershed landscape can enhance the function of water storage and soil conservation as well as ecological optimization in the windwater erosion crisscross region.The results can provide theoretical support for the ecological environment construction and comprehensive utilization of water and soil resources.展开更多
The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because th...The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.展开更多
基金supported by the National Basic Research Program of China (2012CB955404,2012CB955402)the National Natural Science Foundation of China (41321001)
文摘This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis.The mean wind speed observation data and linear fitting method were used.The findings suggested that level-I regionalization includes six zones according to wind speed trend value in different regions,viz.Northeast ChinaeNorth China substantial declining zone,EasteCentral China declining zone,Southeast China slightly declining zone,Southwest China very slightly declining zone,Northwest China declining zone,and QinghaieTibetan Plateau slightly declining zone.Level-II regionalization divides China into twelve regions based on trend of wind speed variability and the level-I regionalization results.
基金Supported by the National Natural Science Foundation of China
文摘Superhalo electrons appear to be continuously present in the interplane- tary medium, even during very quiet times, with a power-law spectrum at energies above ~2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using magnetohydrody- namics and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the mag- netic reconnection region, can accelerate electrons from an initial thermal energy of T ~105 K up to hundreds of keV. After acceleration, some of the accelerated elec- trons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of upward-traveling accelerated electrons versus energy dis- plays a power-law distribution at ~ 2-100 keV, f(E)~ E^-δ, with a 6 of ~1.5 - 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter a (uniform resistivity η) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons.
文摘The exploitation status of wind energy resources was analyzed, and the distribution of wind energy resources and regional meteorological stations were introduced, and then the assessment method of wind energy resources by using data from regional meteorological station was studied taking Huangjin Regional Meteorological Station in Xinning County in Hunan Province for example, besides, corresponding software was compiled. By means of SQL database and program, the method was used simply and easily and had positive meaning for the development of wind energy resources and excavation of wind farm in inland region.
基金Sponsored by National Program on Key Basic Research Project(2011CB403303)A Special Fund for Central Public Welfare Research Institutes(HKY-2011-15)
文摘This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross region where soil erosion is most serious on rainfall and runoff as well as erosion and sediment.Based on the Landsat TM image data and measured data of runoff-sediment in that watershed,the paper analyzed the characteristics of watershed landscape pattern change and runoff-sediment and explored the relationship between landscape index and runoff-sediment yield by means of GIS and Fragstats.The results were included as follows.(1)Grassland was the dominant landscape.In terms of the number of patches and area change rate,from 1985 to 2010,cultivated land,forest land and construction land were most stable,followed by unused land.Unused land,grassland and cultivated land experienced the most dramatic conversion and maximally affected by human activities.(2)The inter-annual difference between annual runoff and annual sediment load was significant.Compared with the annual sediment load,the trend of decreasing runoff was more obvious.The correlation coefficient of runoff-sediment was 0.67,representing a significant correlation.(3)There was a significant correlation between the landscape index and runoff-sediment.The runoff was negatively correlated with the largest patch index,patch cohesion index,aggregation index and contagion index,but positively correlated with landscape morphology index and landscape division index.And the sediment was negatively correlated with the contagion index,aggregation index and plaque cohesion index,but positively correlated with other landscape indexes.The results indicate that with the increase of the largest patch index,patch cohesion index and aggregation index,the rainfall infiltration capacity increase obviously and the soil erosion reduce significantly.Therefore,increasing the largest patch index,patch cohesion and aggregation index of the watershed landscape can enhance the function of water storage and soil conservation as well as ecological optimization in the windwater erosion crisscross region.The results can provide theoretical support for the ecological environment construction and comprehensive utilization of water and soil resources.
文摘The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.