Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the ...In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.展开更多
Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.展开更多
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w...As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.展开更多
Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and atta...Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and attacker intrusion on data transmission, a low energy consumption distributed fault detection mechanism in wireless sensor network(LEFD) is proposed in this paper. Firstly, the time correlation information of nodes is used to detect fault nodes in LEFD, and then the spatial correlation information is adopted to detect the remaining fault nodes, so as to check the states of nodes comprehensively and improve the efficiency of data transmission. In addition, the nodes do not need to exchange information with their neighbor nodes in the initial detection process since LEFD adopts the data sensed by node itself to detect some types of faults, thus reducing the energy consumption of nodes effectively. Finally, LEFD also considers the nodes that may have transient faults. Performance analysis and simulation results show that the proposed detection mechanism can improve the transmission performance and reduce the energy consumption of network effectively.展开更多
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne...Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important...The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.展开更多
Wireless Sensor Networks(WSNs)gather data in physical environments,which is some type.These ubiquitous sensors face several challenges responsible for corrupting them(mostly sensor failure and intrusions in external a...Wireless Sensor Networks(WSNs)gather data in physical environments,which is some type.These ubiquitous sensors face several challenges responsible for corrupting them(mostly sensor failure and intrusions in external agents).WSNs were disposed to error,and effectual fault detection techniques are utilized for detecting faults from WSNs in a timely approach.Machine learning(ML)was extremely utilized for detecting faults in WSNs.Therefore,this study proposes a billiards optimization algorithm with modified deep learning for fault detection(BIOMDL-FD)in WSN.The BIOMDLFD technique mainly concentrates on identifying sensor faults to enhance network efficiency.To do so,the presented BIOMDL-FD technique uses the attention-based bidirectional long short-term memory(ABLSTM)method for fault detection.In the ABLSTM model,the attention mechanism enables us to learn the relationships between the inputs and modify the probability to give more attention to essential features.At the same time,the BIO algorithm is employed for optimal hyperparameter tuning of the ABLSTM model,which is stimulated by billiard games,showing the novelty of the work.Experimental analyses are made to affirm the enhanced fault detection outcomes of the BIOMDL-FD technique.Detailed simulation results demonstrate the improvement of the BIOMDL-FD technique over other models with a maximum classification accuracy of 99.37%.展开更多
In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid for...In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.展开更多
Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n...Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental...In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent.展开更多
Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collect...Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method.展开更多
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security is...As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security issue for WSNs. Wormhole attack is difficult to detect and prevent,as it can work without compromising sensor nodes or breaching the encryption key. We present a wormhole attack detection approach based on the probability distribution of the neighboring-node-number,WAPN,which helps the sensor nodes to judge distributively whether a wormhole attack is taking place and whether they are in the in-fluencing area of the attack. WAPN can be easily implemented in resource-constrained WSNs without any additional requirements,such as node localization,tight synchronization,or directional antennas. WAPN uses the neighboring-node-number as the judging criterion,since a wormhole usually results in a significant increase of the neighboring-node-number due to the extra attacking link. Firstly,we model the distribution of the neighboring-node-number in the form of a Bernoulli distribution. Then the model is simplified to meet the sensor nodes' constraints in computing and memory capacity. Finally,we propose a simple method to obtain the threshold number,which is used to detect the existence of a wormhole. Simulation results show that WAPN is effective under the conditions of different network topologies and wormhole parameters.展开更多
Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make t...Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make the network layer of mobile WSN be vulnerable to multiple attacks,such as black hole(BH),gray hole(GH),flooding attacks(FA)and rushing attacks(RU).Existing researches on intrusion attacks against mobile WSN,currently,tend to focus on targeted detection of certain types of attacks.The defense methods also have clear directionality and is unable to deal with indeterminate intrusion attacks.Therefore,this work will design an indeterminate intrusion attack oriented detecting and adaptive responding mechanism for mobile WSN.The proposed mechanism first uses a test sliding window(TSW)to improve the detecting accuracy,then constructs parameter models of confidence on attack(COA),network performance degradation(NPD)and adaptive responding behaviors list,finally adaptively responds according to the decision table,so as to improve the universality and flexibility of the detecting and adaptive responding mechanism.The simulation results show that the proposed mechanism can achieve multiple types of intrusion detecting in multiple attack scenarios,and can achieve effective response under low network consumption.展开更多
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF2015R1D1A1A01059804)the MSIP (Ministry of Science,ICT and Future Planning),Korea,under the ITRC(Information Technology Research Center) support program (IITP-2016-R2718-16-0011) supervised by the IITP(Institute for Information & communications Technology Promotion)the present Research has been conducted by the Research Grant of Kwangwoon University in 2017
文摘In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.
文摘Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.
基金the Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.20050248043)
文摘As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.
基金supported by the National Natural Science Foundation of China No. 61571162, 61771186Ministry of Education-China Mobile Research Foundation No. MCM20170106+1 种基金Heilongjiang Province Natural Science Foundation No. F2016019University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province No. UNPYSCT-2017125
文摘Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and attacker intrusion on data transmission, a low energy consumption distributed fault detection mechanism in wireless sensor network(LEFD) is proposed in this paper. Firstly, the time correlation information of nodes is used to detect fault nodes in LEFD, and then the spatial correlation information is adopted to detect the remaining fault nodes, so as to check the states of nodes comprehensively and improve the efficiency of data transmission. In addition, the nodes do not need to exchange information with their neighbor nodes in the initial detection process since LEFD adopts the data sensed by node itself to detect some types of faults, thus reducing the energy consumption of nodes effectively. Finally, LEFD also considers the nodes that may have transient faults. Performance analysis and simulation results show that the proposed detection mechanism can improve the transmission performance and reduce the energy consumption of network effectively.
文摘Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.
文摘The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.
文摘Wireless Sensor Networks(WSNs)gather data in physical environments,which is some type.These ubiquitous sensors face several challenges responsible for corrupting them(mostly sensor failure and intrusions in external agents).WSNs were disposed to error,and effectual fault detection techniques are utilized for detecting faults from WSNs in a timely approach.Machine learning(ML)was extremely utilized for detecting faults in WSNs.Therefore,this study proposes a billiards optimization algorithm with modified deep learning for fault detection(BIOMDL-FD)in WSN.The BIOMDLFD technique mainly concentrates on identifying sensor faults to enhance network efficiency.To do so,the presented BIOMDL-FD technique uses the attention-based bidirectional long short-term memory(ABLSTM)method for fault detection.In the ABLSTM model,the attention mechanism enables us to learn the relationships between the inputs and modify the probability to give more attention to essential features.At the same time,the BIO algorithm is employed for optimal hyperparameter tuning of the ABLSTM model,which is stimulated by billiard games,showing the novelty of the work.Experimental analyses are made to affirm the enhanced fault detection outcomes of the BIOMDL-FD technique.Detailed simulation results demonstrate the improvement of the BIOMDL-FD technique over other models with a maximum classification accuracy of 99.37%.
文摘In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.
基金supported by the National Science Foundation for Outstanding Young Scientists (60425310)the Science Foundation for Post-doctoral Scientists of Central South University (2008)
文摘Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金Supported by National Natural Science Foundation of China (60602061) and National High Technology Research and Development Program of China (863 Program) (2006AA01Z413)
文摘In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent.
基金supported by the National High Technology Research and Development Program of China(No.2011AA040103-7)the National Key Scientific Instrument and Equipment Development Project(No.2012YQ15008703)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY13F020015)National Science Foundation of China(No.61104089)Science and Technology Commission of Shanghai Municipality(No.11JC1404000)Shanghai Rising-Star Program(No.13QA1401600)
文摘Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method.
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
文摘As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security issue for WSNs. Wormhole attack is difficult to detect and prevent,as it can work without compromising sensor nodes or breaching the encryption key. We present a wormhole attack detection approach based on the probability distribution of the neighboring-node-number,WAPN,which helps the sensor nodes to judge distributively whether a wormhole attack is taking place and whether they are in the in-fluencing area of the attack. WAPN can be easily implemented in resource-constrained WSNs without any additional requirements,such as node localization,tight synchronization,or directional antennas. WAPN uses the neighboring-node-number as the judging criterion,since a wormhole usually results in a significant increase of the neighboring-node-number due to the extra attacking link. Firstly,we model the distribution of the neighboring-node-number in the form of a Bernoulli distribution. Then the model is simplified to meet the sensor nodes' constraints in computing and memory capacity. Finally,we propose a simple method to obtain the threshold number,which is used to detect the existence of a wormhole. Simulation results show that WAPN is effective under the conditions of different network topologies and wormhole parameters.
基金Support by the National Natural Science Foundation of China(No.61771186)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125)+1 种基金Outstanding Youth Project of Provincial Natural Science Foundation of China(No.YQ2020F012)Graduate Innovative Research Project of Heilongjiang University(No.YJSCX2020-061HLJU).
文摘Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make the network layer of mobile WSN be vulnerable to multiple attacks,such as black hole(BH),gray hole(GH),flooding attacks(FA)and rushing attacks(RU).Existing researches on intrusion attacks against mobile WSN,currently,tend to focus on targeted detection of certain types of attacks.The defense methods also have clear directionality and is unable to deal with indeterminate intrusion attacks.Therefore,this work will design an indeterminate intrusion attack oriented detecting and adaptive responding mechanism for mobile WSN.The proposed mechanism first uses a test sliding window(TSW)to improve the detecting accuracy,then constructs parameter models of confidence on attack(COA),network performance degradation(NPD)and adaptive responding behaviors list,finally adaptively responds according to the decision table,so as to improve the universality and flexibility of the detecting and adaptive responding mechanism.The simulation results show that the proposed mechanism can achieve multiple types of intrusion detecting in multiple attack scenarios,and can achieve effective response under low network consumption.