The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a ...The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.展开更多
Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunc...Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunction constructing strategy,Ni4Mo alloys were in-situ grown on the unsaturated coordinated sulfur atoms of sulfur vacancies-rich ZCS(Sv-ZCS)via interfacial Ni-S covalent bonds.The experimental and theoretical results reveal that these unsaturated sulfur atoms induced by sulfur vacancies vastly facilitate to anchor more Ni-Mo nanoparticles and form abundant Ni-S covalent bonds,meanwhile,these sulfur vacancies could form dual internal electric field(IEF)and work with Ni-S covalent bonds as“Electron Bridge”to further accelerate photoelectrons transfer,as well as promote the activation of water molecules and the desorption of hydrogen proton.Accordingly,the optimized Ni_(4)Mo/Sv-ZCS composite achieves an improved photocatalytic hydrogen evolution(PHE)rate of 94.69 mmol h^(-1)g^(-1)without an evident decrease after 6 cycles of photocatalytic tests,which is 21.2 and 1.94 times higher than those of Pt/ZCS and Ni_(4)Mo/ZCS,respectively.This tactic opens a new way for optimizing Zn_(x)Cd_(1-x)S-based heterojunctions by constructing sulfur vacancies and covalent bonds as“Electron Bridge”to enhance the activity of PHE.展开更多
Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The sto...Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The stoichiometry and composition of electroless Sb<sub>2</sub>S<sub>3</sub> thin films were analyzed using XPS depth profile studies. The surface layers were found nearly stoichiometric. On the other hand, the inner layer was rich in antimony composition making it more conductive electrically.展开更多
基金supported by the National Natural Science Foundation of China(No.32071713)the Outstanding Youth Foundation Project of Heilongjiang Province of China(JQ2019C001)。
文摘The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.
基金supported by the National Natural Science Foundation of China under Grant(51871078 and 52071119)the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021025)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(ES202211)。
文摘Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunction constructing strategy,Ni4Mo alloys were in-situ grown on the unsaturated coordinated sulfur atoms of sulfur vacancies-rich ZCS(Sv-ZCS)via interfacial Ni-S covalent bonds.The experimental and theoretical results reveal that these unsaturated sulfur atoms induced by sulfur vacancies vastly facilitate to anchor more Ni-Mo nanoparticles and form abundant Ni-S covalent bonds,meanwhile,these sulfur vacancies could form dual internal electric field(IEF)and work with Ni-S covalent bonds as“Electron Bridge”to further accelerate photoelectrons transfer,as well as promote the activation of water molecules and the desorption of hydrogen proton.Accordingly,the optimized Ni_(4)Mo/Sv-ZCS composite achieves an improved photocatalytic hydrogen evolution(PHE)rate of 94.69 mmol h^(-1)g^(-1)without an evident decrease after 6 cycles of photocatalytic tests,which is 21.2 and 1.94 times higher than those of Pt/ZCS and Ni_(4)Mo/ZCS,respectively.This tactic opens a new way for optimizing Zn_(x)Cd_(1-x)S-based heterojunctions by constructing sulfur vacancies and covalent bonds as“Electron Bridge”to enhance the activity of PHE.
文摘Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The stoichiometry and composition of electroless Sb<sub>2</sub>S<sub>3</sub> thin films were analyzed using XPS depth profile studies. The surface layers were found nearly stoichiometric. On the other hand, the inner layer was rich in antimony composition making it more conductive electrically.